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Abstract

In many cognitive tasks, lapses (spontaneous errors) are tacitly dismissed as the result of nui-

sance processes like sensorimotor noise, fatigue, or disengagement. However, some lapses

could also be caused by exploratory noise: randomness in behavior that facilitates learning in

changing environments. If so, then strategic processes would need only up-regulate (rather

than generate) exploration to adapt to a changing environment. This view predicts that more

frequent lapses should be associated with greater flexibility because these behaviors share a

common cause. Here, we report that when rhesus macaques performed a set-shifting task,

lapse rates were negatively correlated with perseverative error frequency across sessions,

consistent with a common basis in exploration. The results could not be explained by local

failures to learn. Furthermore, chronic exposure to cocaine, which is known to impair cognitive

flexibility, did increase perseverative errors, but, surprisingly, also improved overall set-shift-

ing task performance by reducing lapse rates. We reconcile these results with a state-switch-

ing model in which cocaine decreases exploration by deepening attractor basins

corresponding to rule states. These results support the idea that exploratory noise contributes

to lapses, affecting rule-based decision-making even when it has no strategic value, and sug-

gest that one key mechanism for regulating exploration may be the depth of rule states.

Author summary

Why do we make mistakes? We seem to have the capacity to identify the best course of

action, but we do not always choose it. Here, we report that at least some mistakes are due

to exploration—a type of decision-making that is focused on discovery and learning,

rather than on choosing the best option. This is surprising because many views of explora-

tion assume that exploration only happens phasically—when the circumstances suggest

that you should abandon your previous course of action and make a new plan. However,

here, we find evidence that exploration drives decisions to change your behavior both

when change is helpful and when it is a mistake. More work is needed to understand why

we explore tonically, but it is possible that tonic exploration may been so useful over
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evolutionary time that our brains evolved to continue to explore today, even when it has

no strategic benefit in the moment. For example, a tonic algorithm for exploration could

reduce the effort required to make decisions or prepare us to take advantage of unex-

pected opportunities.

Introduction

Decision-makers can implement arbitrary rules (i.e. stimulus-response mappings) and flexibly

change them when contingencies change [1,2]. Yet even sophisticated decision-makers occa-

sionally fail to implement well-learned rules. Why do these lapses occur? In the past, lapses of

rule adherence have been tacitly dismissed as the product of ancillary nuisance processes, such

as memory deficits, sensorimotor noise, or disengagement [3–6]. An alternative view is that

some lapses occur because of the same adaptive processes that allow rule-learning and cognitive

flexibility in a changing environment. That is, lapses may be caused, in part, by exploration.

In changing environments, decision-makers balance the exploitation of valuable strategies

with exploration. That is, they occasionally deviate from previous rules in order to sample alter-

native options and learn about the environment [7–12]. In some algorithms for exploration, the

decision to explore is gated by uncertainty about the correct action [9,11,13]. We will call these

phasic exploration algorithms, because exploration only occurs when reducing perseveration

has the greatest benefit. Conversely, in what we will call tonic exploration algorithms, the deci-

sion to explore does not entirely depend on the value of exploration, but instead also occurs

spontaneously—even when there is no benefit to exploration [9,11]. Although tonic exploration

may appear suboptimal, exploring tonically eliminates the need to calculate the value of explora-

tion at every time step, is robust to errors in calculating the value of exploration, and it can per-

form nearly as well as phasic exploration in many circumstances [8,11,14]. However, tonic

exploration also has costs: when the environment is stable, it will produce errors of rule adher-

ence that have no immediate strategic benefit. That is, it would cause lapses.

It is not clear whether lapses of rule adherence are due to the same exploratory processes

that underlie our capacity for flexibility. If so, this could provide novel insights into both explo-

ration and into disorders in which lapse rates are abnormal (e.g. [15–17]). Perhaps the best

way to address this question is by looking at behavior in a task that has both stable periods—in

which there is no uncertainty and exploratory noise has no strategic benefit—but also rapid

changes in reward contingencies that require adaptation and learning. That is, in an extreme

example of the change-point tasks used to study adaptation to volatility in reward contingen-

cies [18–21]. If tonic exploration causes both lapses and flexibility, then spontaneous lapses

during stable periods should predict the ability to discard a rule when the environment does

change. That is, lapse rates should be negatively correlated with perseverative errors. An alter-

native hypothesis is that exploration is phasic, generated only at change points. If so, then lapse

rates would not be correlated with perseverative errors (because they are caused by different

processes), or perhaps positively correlated (because they are both errors of task performance).

Furthermore, if lapse rates and adaptation at change points are both caused by tonic explo-

ration, then it should be possible to simultaneously regulate both behaviors via perturbing the

underlying common cause. One candidate perturbation is chronic cocaine exposure, which

has long been known to reduce cognitive flexibility, though the nature of these effects is com-

plex [22–26]. For example, cocaine abusers make more perseverative errors in classic rule-

shifting tasks such as the Wisconsin Card Sort Task (WCST, [27–30] and both rodents and

monkeys exposed to cocaine show deficits in reversal learning [31,32], failing to change
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behavior in the face of aversive outcomes [33]. This striking inflexibility may even contribute

to the cycle of abuse in cocaine users [23,26,34]. However, although there is convincing evi-

dence that chronic cocaine exposure causes inflexibility, these effects have defied simple expla-

nation in terms of changes in common behavioral parameters such as reward processing or

learning rates.

If chronic cocaine abuse increases inflexibility via decreasing tonic exploration, then it

should not only cause perseverative errors, but also decrease lapse rates. It could, for example,

simultaneously decrease flexibility yet improve performance in set-shifting tasks. Indeed, at

least one observational study reported that human cocaine abusers performed better in the

WCST, compared to controls [35]. However, it remains unclear whether chronic cocaine can

causally simultaneously reduce lapse rates and increase perseverative errors within the same

subjects. Addressing this question has the potential to reconcile seemingly paradoxical results in

the cocaine literature, and, at the same time, to address a fundamental question about whether

lapses are caused by the same tonic exploration process that facilitates adaptation and learning.

Here, we examined behavior of rhesus macaques performing the cognitive set shifting task

(CSST, [36–40], a primate analogue of the WCST, both before and after exposure to cocaine.

This task is ideal to address the present question because it combines a change point task with

a rule-based decision-making task that requires monkeys to repeatedly apply a cognitive rule.

Consistent with tonic exploration, we found evidence of a common cause of lapse rates during

stable periods and flexibility following change points. Cocaine not only reduced flexibility, but

simultaneously and proportionally decreased lapse rates, suggesting that cocaine regulates

tonic exploration. Finally, we fit a model to the dynamics of behavior, in which cocaine

decreased exploration via deepening the attractor basins that correspond to rule states.

Together these results suggest that exploration occurs tonically and may be well-described as

variation in the depth of attractor basins corresponding to rule states.

Results

Two macaques performed 147 sessions of a primate analogue of the WCST (the CSST [36–40];

Fig 1A) before and after chronic self-administration of cocaine (n = 89 baseline sessions before

cocaine administration, monkey B: n = 62, monkey C: n = 27; n = 58 post-cocaine sessions

after, monkey B: 33, monkey C: 25). On each trial monkeys were sequentially offered three

choice options that differed in both color and shape (drawn from nine possible combinations

of three colors and three shapes). One of the six stimulus features was associated with reward.

The rewarded feature (i.e. rule) was chosen randomly and remained fixed until a rule change

was triggered (by 15 correct trials under this rule). Rule changes were not cued.

Monkeys chose the most rewarding option frequently (81.4% of trials ± 6.5% STD across

sessions, monkey B = 83.9% ± 5.8% STD, monkey C = 77.1% ± 5.7% STD; average of 576 tri-

als per session, 470 rewarded) and adapted quickly to rule changes (Fig 1B). Most errors

were perseverative (repeated either the color or shape of the previous option; 64 ± 8.5%

STD across sessions; average of). Pre-cocaine sessions were collected after 3 months of

training. We observed no measurable trend in performance across the pre-cocaine sessions

(Fig 2A; percent correct, GLM with terms for main effects of monkey and session number,

session number beta = 0.0002, p = 0.6, df = 86, n = 89). Thus, performance had reached sta-

ble levels before data collection began.

Lapse rates and perseverative errors are negatively correlated

Lapses and perseverative errors could be related (or unrelated) for a variety of reasons (Fig

2B). First, if lapses are caused by the same process that helps to discard a rule when it is no
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longer rewarded (e.g. tonic exploratory noise) then lapse rates would be negatively correlated

with perseverative errors across sessions. Second, if lapses and perseverative errors are regu-

lated by different processes (e.g. if lapses occur because of a transient memory deficit, while

perseverative errors occur because of a failure of inhibitory control), then the frequency of

lapses and perseverative errors would not be correlated. Third, if some nuisance process causes

both types of errors, then lapses and perseverative errors might even be positively correlated.

For example, fatigued or disengaged animals might learn more slowly, taking longer to dis-

cover rules and making more lapses before a rule switch. But, at the same time, slowed learning

would increase the time necessary to discard a rule once it has been learned, leading to more

perseverative errors after a rule switch.

We compared relative frequency of perseverative errors in the five trials after change points

(when learning was maximal; Fig 1B) with lapse rates in the ten trials before change points (a

non-overlapping subset of trials in which learning had reached asymptote). Lapse rates and

perseverative errors were negatively correlated (Fig 2C; both monkeys: Pearson’s r = -0.52,

p< 0.0001, n = 89). This was not a trivial consequence of a performance offset between the

monkeys: the effect was strongly significant within the monkey in which we had more baseline

data (monkey C: n = 62 sessions, r = -0.45, p< 0.0002; same sign in monkey B: n = 27 sessions,

r = -0.26, p = 0.25). There was also no evidence that the effect magnitude changed over time

Fig 1. Task design and baseline behavior. A) The CCST task. Three options, which differed in both shape and color were sequentially

presented. Choosing an option that matched the rewarded rule produced a green outline around the chosen option and a reward. Choosing

either of the other two options produced a red outline and no reward. Middle row, left: Rules could be any of the three shapes or any of the

three colors. Right: The options that matched a rule were the set of stimuli that shared the rule’s feature. Bottom: After the monkeys achieved

15 correct choices, the rewarded rule changed, which forced the monkeys to search for the new rule. B) Percent correct as a function of trials

before and after rule changes. The 0th trial is the last trial before the rule changed. Gray shading +/- STD.

https://doi.org/10.1371/journal.pcbi.1007475.g001
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Fig 2. Behavior in baseline sessions. A) Percent correct as a function of session-number in the baseline sessions, plotted separately for monkey C (green dots) and

monkey B (orange). Lines = GLM fits (Results). n.s. = not significant. B) Possible relationships between lapse rates and perseverative errors under different hypotheses.

Top) A negative correlation if some spontaneous lapses are caused by the same exploratory process that facilitates learning and reduces perseveration at change points.

Middle) No correlation if lapses and perseveration are caused by different underlying error processes. Bottom) A positive correlation if lapses and perseveration are both

caused by a common error process, such as task disengagement or a failure to learn the reward contingencies. C) The observed relationship between lapses in the 10

trials proceeding change points and perseverative errors in the 5 trials after change points. D) Model comparison asking whether perseverative errors are more closely
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with experience in this monkey (monkey C: sessions < 20: 19 sessions, r = -0.49, p < 0.05; ses-

sions 20+: 43 sessions, r = -0.50, p< 0.001) and the effect seemed to go down, if anything, in

the monkey in whom we had fewer baseline sessions (monkey B: sessions < 20: 19 sessions, r

= -0.34, p = 0.15; sessions 20+: 8 sessions, r = 0.14, p = 0.74; though it increased again in the

post-cocaine sessions: n = 33, r = -0.37, p< 0.05). This negative correlation was apparent

regardless of whether we examined lapses where choices changed in both dimensions (both

monkeys: Pearson’s r = -0.60, p< 0.0001) or lapses that differed in only one dimension (both

monkeys: Pearson’s r = -0.38, p< 0.0002). There was no increase in lapses in anticipation of

change points, suggesting that this effect was due to an offset in the rate of lapses throughout

the stable period not to the monkeys’ attempts to time change points (S1 Fig). Thus, the nega-

tive correlation between lapses and perseverative errors indicates that the rate of lapses in rule

adherence is positively correlated with the ability to discard a rule when it is no longer

rewarded.

Lapse rates in one epoch cannot directly cause flexibility in another epoch (or vice versa),

so this correlation implies that both behaviors share some common, underlying cause. One

possibility is tonic exploration, which would cause monkeys to occasionally sample an alterna-

tive to the current best option, regardless of change points. Another possibility is that monkeys

may simply fail to learn in some subset of blocks, which would cause lapses (because the rule is

never discovered) and reduce perseverative errors (because a rule that is never discovered is

cannot persevere). The failure-to-learn view predicts that perseverative errors in one block

should be best explained by the lapses in the immediately preceding block. However, the prob-

ability of perseverative errors in each individual block was best explained by the global lapse

rate for the session, not by the lapse rate or the rate of learning in the previous block (Fig 2D;

see Methods; last-block lapse rate model: log likelihood = -6063.4, AIC = 12133, BIC = 12152;

last-block learning rate model: log likelihood = -6067.8, AIC = 12142, BIC = 12160; global

lapse rate model: log likelihood = -6044.2, AIC = 12094, BIC = 12113; best model = global

lapse rate model, all other AIC and BIC weights < 0.0001). Thus, the negative correlation

between lapse rates and perseverative errors was not due to a failure to learn in some blocks,

but instead to some global common cause, such as tonic exploration.

Lapses are best explained by exploration, not fatigue or disengagement

If lapses are just due to a nuisance process like disengagement or fatigue—and the negative

correlation between lapses and perseverative errors were due to some trivial variability in

learning across sessions—then the sessions with the highest lapse rates should be the ones with

the lowest learning rates. On the other hand, the purpose of exploration is to learn about the

environment [11] and previous empirical studies report that learning is enhanced during

exploration [8]. Therefore, if some lapses are caused by tonic exploration, then the sessions

with the highest lapse rates should also be the ones with the highest learning rates. Indeed, the

sessions with the highest lapse rates were the ones with the most learning. Across monkeys in

the baseline sessions, lapse rates were positively correlated with the effect of reward outcomes

on the decision made on the next trial (the “outcome effect index”; see Methods) (Fig 2E; both

monkeys: Pearson’s r = 0.49, p< 0.0001, n = 89 pre-cocaine sessions). The positive correlation

related to the rate of learning or lapse rate in the last block or to the global lapse rate in that session. E) The correlation between lapse rates and the outcome effect index,

a whole-session measure of learning rate. F) The probability of repeating a choice made in error during lapses, compared to other errors in monkey B (top) or monkey C

(bottom). G) The frequency that lapses deviate from the last choice in either 1 or 2 stimulus dimensions, normalized by the expected frequency of that choice. H)

Changes in errors over the course of each session. Sessions are divided into five equal blocks. Top) Total probability of errors by block. Bottom) proportion of errors that

were lapse-like by block. I) The correlation between the likelihood of novel choices (matching neither the last color nor last shape), given reward delivery and omission.

J) Relationship between the effects illustrated in panels C (x-axis) and panel K (y-axis). Best fit lines = ordinary least squares. Bars = standard errors.

https://doi.org/10.1371/journal.pcbi.1007475.g002
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was apparent within each monkey in the full dataset (monkey B: r = 0.66, p< 0.0001, n = 60;

monkey C: r = 0.39, p< 0.0002, n = 87; both together: Pearson’s r = 0.44, p< 0.0001, n = 147).

This means that learning was highest on sessions when lapse rates were highest, consistent

with the idea that lapses were due to an underlying drive to learn, rather than disengagement

with the task or trivial variability in learning rates across sessions.

Next, we asked whether learning was enhanced during lapses themselves, compared to

other errors. To the extent that the monkeys are learning from errors, they will avoid choices

made in error. If learning is increased during lapses, we reasoned that monkeys should be less

likely to repeat lapse choices, compared to other choices made in error. Indeed monkeys were

more likely to avoid repeating lapse choices in the next two trials (Fig 2F; mean decrease in

probability of repetition after lapses compared to other errors = -0.02, 95% CI = [-0.01, -0.03],

p< 0.0001, t(88) = -4.67, paired t-test; monkey B: effect size = -0.02, p< 0.005, t(26) = -4.62;

monkey C: effect size = -0.02, p< 0.001, t(61) = -3.53; similar results for 3 or 5 trials into the

future). This was an artifact of some greater tendency to repeat rewarded choices in the vicinity

of lapse errors because there was no change in the probability of repeating rewarded choices (±
1 choice from a lapse or other error, effect size = -0.005, p> 0.6). These results suggest that

learning was enhanced during lapses, consistent with an underlying exploratory cause of

lapses.

Together, these results suggest that at least some errors of rule adherence are due to tonic

exploratory noise, rather than to nuisance processes. However, it is important to note that

tonic exploratory noise implies that the timing of exploration is random, not the choice of

what to explore. Lapses may still target important or valuable options, meaning they could

reflect a tonic, but directed form of exploration [12]. This would lend further support to the

idea that lapses are not solely caused by nuisance processes. In this task, monkeys can lapse by

choosing options that differ in both dimensions from the previous choice or options that differ

in only one dimension. During stable periods, changing both dimensions would never pro-

duce rewards and would provide less information about which choice feature caused the last

reward (S2 Fig). Thus, the smartest strategy would be to preferentially lapse in only one

dimension. This is exactly what we found (base rate of change 1 dimension lapses = 4.5%,

change 2 dimension lapses = 3.9%, difference = 0.006, 95% CI = [0.001, 0.010], p< 0.02, t(88)

= 2.49, paired t-test; monkey B: effect size = 0.008, p = 0.19, t(26) = 1.34; monkey C: effect

size = 0.005, p< 0.02, t(61) = 2.26). This pattern is more striking when you consider that, by

chance, lapses should change 2 dimensions more frequently than 1 (see Methods). Neverthe-

less, lapses were 1.7 times more likely than chance to change in only 1 dimension (Fig 2G; sig.

more frequent than chance at 1x, 95% CI = [1.57, 1.84], p< 0.0001, t(88) = 10.29; monkey B:

1.6x, p< 0.0001, t(26) = 10.46; monkey C = 1.75x, p< 0.0001, t(61) = 7.93). Thus, although

lapses occurred during periods in which they could not improve task performance, these were

still smart, information-seeking choices.

Exploration tends to occur most frequently early in experimental sessions—when learning

is most valuable—an observation known as the “horizon effect” [12,41,42]. Therefore, we rea-

soned that if lapses are caused by exploration, they should occur less frequently as the session

progresses. In contrast, nuisance processes like fatigue or disengagement tend to increase over

the course of an experimental session, as animals become satiated and bored, so any nuisance

cause of lapses would increase their frequency over the course of a session. Indeed, the animals’

tended to make more errors overall as the sessions progressed (Fig 2H; GLM predicting error

from quantile binned sessions, beta = 0.016, p< 0.0001, n = 147 divided into 5 equal bins;

identical results for 10 bins, though there were a large number of empty cells). However, the

proportion of these that were lapse-like decreased over the course of the session (Fig 2H; beta

= -0.008, p< 0.002). This was especially pronounced when we confined our analyses to the
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stable periods (beta = -0.011, p< 0.02). A decrease in the relative proportion of lapses is exactly

what we would expect if one latent cause of lapses—such as a tonic drive to explore—decreased

over the course of the session, while a more general cause of errors—such as fatigue or dis-

engagement—tended to increase.

A common cause of novel choices, regardless of outcome

It remained possible that lapses were negatively correlated with perseverative errors, because

of some artifact in how we calculated lapses or perseverative errors. Therefore, we next asked

whether there was other behavioral evidence that exploration was tonic, occurring both when

it was immediately helpful and when it was not. In this task, the outcome of the previous trial

provides perfect information about whether or not that choice was correct. If monkeys were

rewarded on the last trial, then either the color or shape of the last choice matched the

rewarded rule and the best response is to repeat either the color or shape or both in the next

trial. Conversely, if the monkeys were not rewarded, then neither the color or shape of the last

choice was consistent with the rewarded rule and the best response is to choose a novel option

—one that matches neither the color nor the shape of the previous choice. However, tonic

exploration would sometimes cause monkeys to choose novel options following reward deliv-

ery—when it is clearly incorrect to do so. Indeed, the monkeys did choose novel options after

both reward delivery (monkey B: 15.8% novel choices, monkey C: 9.6%) and omission (mon-

key B: 31.6% novel choices, monkey C: 25.2%). Tonic exploration not only predicts that these

choices should occur, but that their frequency should be governed by a common underlying

process. That is, the frequency of novel choices after reward delivery should be correlated with

the frequency of novel choices after reward omission. Indeed, these choices were strongly cor-

related (Fig 2I; Pearson’s r = 0.72, p< 0.0001, n = 89). This was individually significant within

the animal in which we had more baseline sessions (monkey C: n = 62 sessions, r = 0.68,

p< 0.0001; monkey B: n = 27 sessions, r = -0.04, p = 0.9). Thus, the monkeys’ decisions to

deviate from choice history—to try something new—also co-varied, regardless of whether or

not that was correct, consistent with a common cause.

If the preference for novelty were due to the same underlying exploratory mechanism that

caused the negative relationship between lapses and perseverative errors, then we would expect

these two effects to be positively correlated across monkeys and sessions. The axis on which

each pair of effects endogenously co-varied (i.e. the best fit lines in Fig 2C and 2I) reflects the

linear portion of all common underlying influences. Any variation in these underlying influ-

ences would shift where the data fell along this single dimension. Therefore, to determine

whether the preference for novelty was due to the same underlying exploratory mechanism,

we projected each pair of effects onto these best fit lines (see Methods) and asked whether vari-

ation in the common cause of lapses and perseverative errors predicted variation in the com-

mon cause of novel choices. There were strong positive correlations between the two effects in

both monkeys individually (Fig 2J; monkey C: n = 62 sessions, r = 0.56, p< 0.0001; monkey B:

n = 27 sessions, r = 0.50, p< 0.01) and together (Pearson’s r = 0.52, p< 0.0001, n = 89). Thus,

the shared tendency to choose novel options, regardless of reward history, was related to the

same underlying tonic exploratory process.

Cocaine self-administration

The baseline behavior suggested that a common, exploratory process regulated the decision to

deviate from a rule or choose a novel option, regardless of whether or not it was correct to do

so. If this is true, then it should be possible to co-regulate lapses and perseverative errors by

regulating this tonic exploratory process process. Therefore, we next allowed both monkeys to
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self-administer cocaine—exposure to which is known to affect the ability to adapt to a chang-

ing environment [22–26,31].

Monkeys self-administered cocaine through an implanted venous port (see Methods).

Briefly, for 3 hours each day, 5 days a week, over a total of 6 to 7 weeks (monkey B: 50 days,

monkey C: 42 days), monkeys were placed in front of a touch screen display and pressed a cen-

trally located cue a set number of times (see Methods), which resulted in cocaine infusion.

Monkeys initially underwent self-administration training (10 days). During this time, the

cumulative dose of cocaine self-administered per day increased from 0.8 mg/kg to 4 mg/kg at

3 responses/reward (FR3), followed by a ramp-up period to 30 responses/reward (FR30; 7 days

at 4 mg/kg), after which we began examining behavioral data during chronic cocaine exposure.

We collected behavior in the morning, while monkeys self-administered cocaine in the after-

noon in a separate session (with a minimum of 1 hour of home cage time in between). This

experimental design allowed us to determine the long-term effects of chronic cocaine self-

administration without the drug “on board” at the time of testing. Over all self-administration

sessions, monkey B administered a cumulative total of 179.9 mg/kg of cocaine, while monkey

C administered 153.2 mg/kg cocaine.

Effects of cocaine on behavior

Because chronic cocaine exposure is associated with decreased flexibility and increased persev-

eration, we first asked whether cocaine administration changed the proportion of perseverative

errors. It did (Fig 3A; fraction of all errors that were perseverative, post cocaine compared to

pre, t-test: p< 0.0001, t(145) = 6.13, mean increase in fraction perseverative errors = 7.7%,

95% CI = 5.1% to 10.0%; monkey B: p< 0.0001, t(58) = 7.70; monkey C: p< 0.0001, t(85) =

6.99). One concern in any study of chronic drug use is that practice alone could change behav-

ior and appear to be a drug effect. To test for this possibility, we developed a generalized linear

model (GLM) to differentiate between the effects of drugs and practice (see Methods). There

was no effect of practice on perseverative errors (β2 = 0.003, p = 0.7) and including a term for

session number did not change the magnitude of the effect of cocaine (β1 = 0.097, p< 0.0001),

indicating that practice explained little, if any, change in perseverative errors in post-cocaine

sessions.

If cocaine increased perseveration by decreasing tonic exploration, then it might also

improve overall performance in this set-shifting task by reducing lapse rates. Cocaine reduced

whole-session error rates (Fig 3B; percent correct, post cocaine compared to pre, t-test:

p< 0.001, t(145) = 3.36, mean increase = 3.6%, 95% CI = 1.5% to 5.7%; monkey B: p< 0.0001,

t(58) = 6.30; monkey C: p< 0.002, t(85) = 3.22). Again, session number did not affect accuracy

(β2 = 0.001, p = 0.9) and accounting for session number only increased the apparent magni-

tude of the effect of cocaine (compare 3.6% change to β1 = 0.054, p< 0.0005). This was likely

driven by the substantial decrease in the frequency of lapses in the 10 trials before change

points (Fig 3C; two-sample t-test; monkey B: p< 0.0001, t(58) = 5.57, mean difference = 7.1%,

95% CI = 4.6% to 9.7%; monkey C: p< 0.0006, t(85) = 3.59, mean = 4.0%, 95% CI = 1.8% to

6.2%).

The hypothesis that cocaine regulates a common cause of flexibility and lapses makes a

strong prediction: that cocaine should simultaneously shift lapses and perseverative errors

along the axis on which they endogenously co-vary (i.e. the best fit line in Fig 2C). Therefore,

we measured the projection of the pre- and post-cocaine sessions onto the axis along which

the two behaviors endogenously co-varied (see Methods). Cocaine significantly shifted behav-

ior along this axis (Fig 3C; two-sample t-test, both monkeys: p< 0.0001, t(145) = 7.60, mean

shift = 0.77, 95% CI = 0.57 to 0.98). The effect was similar in both monkeys (monkey B:
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p< 0.0002, t(58) = 4.09, mean = 0.72, 95% CI = 0.37 to 1.07; monkey C: p< 0.0001, t(85) =

5.48, mean = 0.68, 95% CI = 0.44 to 0.93). This result is consistent with the idea that cocaine

regulates the underlying cause of both behaviors.

Fig 3. Changes in CSST behavior after cocaine administration. A) The probability of perseverative errors before and after cocaine

treatment (before = light, after = dark), plotted together for both monkeys (gray) as well as separately for monkey B (orange bars) and

monkey C (green). Error bars +/- SEM throughout and � p< 0.05, two-sample t-test. B) Same as A, for the percent of total correct trials in

the pre- and post-cocaine sessions. C) Cocaine’s effects on the relationship between spontaneous lapses and perseverative errors. Same as

2E, but now illustrating post-cocaine sessions (dark) and pre-cocaine sessions (light). The vectors reflect the shift in the mean with cocaine

for monkey B (orange) and monkey C (green). E) Cartoons illustrating different hypotheses. Top) If cocaine decreased learning rates, it

would reduce effect of past outcomes on future choices, thereby reducing the difference in the probability of novel choices following trials

that were or were not rewarded. Bottom) If cocaine decreases exploration, it would reduce all novel choices, without regard to previous

reward outcome. E) Change in novel choice probability, plotted separately for reward omission (gray) and delivery (blue). Pre-

cocaine = light, post cocaine = dark. F) Cocaine’s effects on the relationship between novel choices after reward delivery (ordinate) and

omission (abscissa). Conventions the same as in 3C.

https://doi.org/10.1371/journal.pcbi.1007475.g003
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Next, we asked whether cocaine had similar effects on monkeys’ decisions to deviate from

their own previous policy. That is, the probability of novel choices (Fig 2J). If cocaine

decreased learning (i.e. the effect of reward on behavior), then it would decrease the difference

in novel choices following reward delivery and reward omission (Fig 3D, top). However, if

cocaine decreased tonic exploration, then it would instead decrease the probability of novel

choices, regardless of reward outcome (Fig 3D, bottom). Cocaine decreased the probability of

novel choices both after reward omission (when novel choices were the best option, Fig 3E;

two-sample t-test, both monkeys, p< 0.0001, t(145) = 6.16, mean change = -5.1%, 95% CI =

-3.4 to -6.7%; monkey B: p< 0.0001, t(58) = 7.99; monkey C: p< 0.0001, t(85) = 8.57; not due

to practice β1 = -0.057, p< 0.0001; β2 = -0.008, p = 0.1) and after reward delivery (when novel

choices were the worst option, both monkeys, p< 0.006, t(145) = 2.83, mean change = -1.7%,

95% CI = -0.5 to -2.9%; monkey B: p< 0.0001, t(58) = 6.97; monkey C: p< 0.001, t(85) = 3.50;

not due to practice β1 = -0.024, p< 0.002; β2 = -0.005, p = 0.2). Thus, cocaine decreased the

probability of novel choices, regardless of reward outcome, consistent with tonic exploration.

If these effects are due to cocaine’s effects on tonic exploration, then cocaine should simul-

taneously alter the probability of novel choices regardless of previous outcome. That is, cocaine

should shift novel choice probability along the axis of endogenous co-variability between

rewarded and non-rewarded trials (line in Fig 2G). It did so (Fig 3D: two-sample t-test, both

monkeys, p< 0.0001, t(145) = 5.78, mean change = 0.49, 95% CI = 0.32 to 0.66; monkey B:

p< 0.09, t(58) = 1.73; monkey C: p< 0.0001, t(85) = 7.85). Thus, cocaine appeared to regulate

the probability of making novel choices directly, rather than modulating the effect of rewards

on novel choices. Because tonic exploration would produce novel choices both when they are

useful and when they are not, this result is consistent with the idea that chronic cocaine down-

regulates tonic exploration.

Hidden Markov model

We previously developed a method for differentiating exploration and exploitation in sequen-

tial decision-making tasks that uses a hidden Markov model (HMM) to characterize the latent

goal states underlying behavior [8]. Here, we extend this approach to the CSST task. An HMM

models the dynamics of behavior in a generative framework without making assumptions

about the cognitive and/or neural computations underlying choice. We chose this modeling

framework because our goals were to identify when an animal was exploring and look for

cocaine-related changes in the dynamics of exploration. HMMs are commonly used to make

inferences about the latent states underlying observations, like the latent exploratory or

exploitative goals underlying choices [8,43]. The inference problem has not yet been solved in

a mechanistic framework—a modeling approach which links behavioral features to specific

cognitive or neural processes—because it has proven difficult to differentiate exploration from

errors of reward maximization [8,13,44]. A mechanistic approach would be particularly chal-

lenging here because we do not yet fully understand the psychological and/or neural computa-

tions underlying choice in this task. This means that it is not clear whether choices differ from

the predictions of a value-maximizing model because they are exploratory or because of model

misspecification. (Of course, this is an area of active research: several interesting mechanistic

approaches to this task have been proposed [45,46] and future work can build on promising

advances in multidimensional choice [47,48] and task switching [49,50]). Because an HMM

models the dynamics of latent goals as a system of difference equations, it is also especially ana-

lytically tractable—with an HMM, we can directly calculate how cocaine changes the energet-

ics exploration. Thus, the HMM framework was ideally suited for our present goal—to infer

the latent exploratory states underlying behavior and measure how cocaine affected them.
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The HMM we used (Fig 4A) assumed that animals were making choices while in one of

two discrete types of latent “states”—either they were using a rule, or they were searching for a

rule. We term this search state “exploration” for reasons detailed below. Only choices that

were consistent with the rule were permitted in rule states, but choices were not constrained

during exploration. The model structure was based on two distinct dynamics we found in the

behavior (S2 and S3 Figs): one associated with repeated choices within a feature dimension

(i.e. following a rule) and one associated with rapid samples across feature dimensions with

the same half-life as random choices. The discretization of the latent goal states differentiates

the HMM from other models, such as a Kalman filter or reinforcement learning models

[10,13,51], which would assume some continuous latent state space. However, rules in this

task are discrete by design and behavior was well-described by a mixture of discrete states (S3

Fig). To account for the fact that choice dynamics depended on reward (S5 Fig), we extended

model to allow reward outcomes to affect the probability of transitioning between states (see

Methods; [52]). The input-output HMM (see Methods) qualitatively reproduced the reward-

dependent state durations we observed in behavior (S5 Fig). The performance gradient and

optimal combination of model parameters for this task is shown in (S6 Fig).

We found that the changes in the latent states inferred by the model (see Methods) were

strongly aligned with the change points in the task, indicating that the model was most likely to

identify choices as exploratory at precisely the time when the monkeys were actually searching

for a new rule (compare Figs 4B and 1B, see S7 Fig). For example, the probability of exploration

tended to be lower than chance in the 5 trials before change points (sig. decrease in 96% or 85/89

of individual baseline sessions, 2-sided permutation test against 100 label-shuffled datasets; 95%

or 139/147 overall). Conversely, the first trial after a change point was more likely than chance to

be identified as exploratory in 96% of individual baseline sessions (85/89; 97% or 142/147 over-

all). An example choice sequence with the associated latent state probabilities is shown in Fig 4C.

Explore-labeled choices were information-maximizing and learning was

enhanced

Although similar procedures are used to identify periods of exploration in other tasks [8,43]

and explore-labeled choices occurred most frequently when the animals should have been

searching for a new rule, it remained unclear whether choices labeled as exploratory here were

truly due to exploration. Therefore, we next asked whether explore-labeled choices resembled

exploration in other ways. Were these, like lapses, directed choices in which reward learning

was enhanced? Indeed, we found that explore-labeled choices were more organized with

respect to reward history than we would expect if these were just random choices (Fig 4D; sig.

higher-than-expected mutual information with the previous choice during explore choices,

paired t-test against shuffled control, rewarded on the last trial: 0.23 bits, 95% CI = [0.20, 0.27],

p< 0.0001, t(88) = 14.25; not rewarded on the last trial: 0.17 bits, 95% CI = [0.13, 0.20],

p< 0.0001, t(88) = 8.79). This was due to two distinct patterns of explore-labeled choices after

rewarded and non-rewarded choices. After animals were not rewarded, they were most likely

to explore options that differed in both dimension from the previous choice—maximizing the

chance of discovering a new rewarded action (S2 Fig). Conversely, explore choices after

reward tended to differ in only 1 dimension from the previous option—the choice that maxi-

mized information about which of the previous two stimulus features produced reward (S2

Fig). Thus, exploratory choices were, like lapses, directed to the options that maximized infor-

mation about which option was best.

Next, we asked whether learning was also enhanced during explore-labeled choices in

the baseline sessions. Again, we calculated the outcome effect index, here meaning the effect
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Fig 4. Hidden Markov model (HMM) design and fit to behavior. A) The structure of the HMM, with one latent state for each possible rule, plus one latent “explore

state”. Emissions (not shown) match the rule in the rule states, and are randomly allocated during the explore state. The box around the model indicates that this model

has multiple “plates”, which depend on the reward of the previous trial (bottom right). Each path (p(transition) between states) depends on whether reward was or was

not delivered on the previous trial. B) The posterior probability of explore states and any of the rule states (1-p(explore)) is illustrated as a function of trials relative to

change points in the rewarded rule. Shading: +/- STD. C) Example choice sequence and state labels. Top) A sequence of 300 chosen options, separated vertically by

whether the chosen option was in location 1, 2, or 3. Bottom) The state probabilities from a fitted HMM. Colored boxes correspond to the color-rule states (blue, yellow,

and magenta). Black shapes correspond to shape-rule states (triangle, circle, square). The filled gray line corresponds to the explore state probability. D) Choices made

during exploration were organized with respect to choice history. Right) The likelihood that exploratory choices after reward delivery will differ from the previous

choice in 0, 1, or 2 stimulus dimensions, normalized by expected frequency of that choice type. Inset) Mutual information for real explore choices compared to explore

choices with shuffled choice history for all sessions in monkey B (orange) and monkey C (green). Left) Same as right, for trials following reward omission. E) The

outcome effect index for outcomes received during exploration (gray) or during rules (purple), illustrating the effects on 1 to 5 choices into the future. F) Same as E,

plotted separately for monkey B (top) and monkey C (bottom).

https://doi.org/10.1371/journal.pcbi.1007475.g004
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of an outcome received during either exploration or a rule on future choices (see Methods).

In each monkey, we found that outcomes received during exploration had a smaller effect

on the next choice (Fig 4E; both monkeys, mean change in the 1-trial outcome effect index

0.63, 95% CI = [0.59, 0.68], p < 0.0001, t(88) = 28.2: monkey B = 0.62, 95% CI = [0.54, 0.71],

p < 0.0001, t(26) = 14.9; monkey C = 0.63, 95% CI = [0.58, 0.69], p < 0.0001, t(61) = 23.8).

Monkeys also learned more quickly about outcomes experienced during exploration, as

indexed by a greater rate of decay in the influence of these outcomes (model fits illustrated

in Fig 4E; both monkeys: explore learning rate = 1.52, 95% CI = [1.30, 1.73], rule learning

rate = 0.80, 95% CI = [0.69, 0.92]; other explore parameters: scale = 4.81, 95% CI = [3.81,

5.80], offset = 0.65, 95% CI = [0.62, 0.68]; other rule paramters scale = 1.31, 95% CI = [1.81,

1.44], offset = 0.49, 95% CI = [0.46, 0.51]; monkey B, explore learning rate = 1.20, 95% CI =

[0.93, 1.47], rule learning rate = 0.38, 95% CI = [0.32, 0.44); monkey C, explore learning

rate = 1.73, 95% CI = [1.42, 2.04], rule learning rate = 0.87, 95% CI = [0.74, 1.01]). Thus, the

model labeled as exploratory choices were reward-maximizing choices in which learning

was enhanced.

Cocaine reduces HMM-inferred exploration

First, we asked whether the model was capable of reproducing the major behavioral effects

of cocaine. We fit one model to all the baseline sessions and a second model to the post-

cocaine sessions, then simulated observations from each model. The changes in model

parameters across the baseline and post-cocaine sessions were sufficient to reproduce the

major behavioral results: an increase in both task performance (Fig 5A; mean increase in

percent correct = 14.5%, 95% CI = 12.8 to 16.1%, p < 0.0001, t(145) = 17.70) and persevera-

tive errors (Fig 5B; mean increase in percent perseverative errors = 4.8%, 95% CI = 3.9 to

5.8%, p < 0.0001, t(145) = 9.89). Thus, this descriptive model captured the main effects of

cocaine on behavior.

Next, we asked whether cocaine affected the probability of exploration, as inferred from the

model (see Methods). The monkeys had different levels of exploration, but within each mon-

key, there were fewer explore-state choices in post-cocaine treatment sessions, compared to

baseline sessions (Fig 5C; monkey B: p< 0.0002, t(58) = 4.03, mean change = -9.3%, 95% CI =

-4.7 to -13.9%; monkey C: p< 0.004, t(85) = 3.01, mean = -5.0%, 95% CI = -1.7 to -8.4%; not

due to practice: β1 = 0.052, p< 0.03; β2 = 0.011, p = 0.3). Thus, monkeys explored less often

after cocaine delivery, consistent with the idea that cocaine alters tonic exploration.

This effect was not driven by a change in the probability of exploration during specific

epochs of the task. Instead, cocaine decreased the probability of exploration during both the

stable periods (Fig 5D: 10 trials before change points: monkey B: p< 0.0002, t(58) = 4.03,

mean change = -8.0%, 95% CI = -4.0 to -11.9%; monkey C: p < 0.002, t(85) = 3.20, mean =

-4.3%, 95% CI = -1.6 to -7.0%) and during all other periods of the task, excluding these stable

periods (monkey B: p< 0.005, t(58) = 3.02, mean change = -7.6%, 95% CI = -2.6 to -12.7%;

monkey C: p< 0.05, t(85) = 2.07, mean = -3.8%, 95% CI = -0.1 to -7.5%). Thus, cocaine

decreased the probability of exploration, regardless of whether that exploration was occurring

when it was helpful or when it was not.

Effects of cocaine on model dynamics

The stationary distribution of a HMM is the equilibrium probability distribution over states

[53]. Here, this means the relative occupancy of explore-states and rule-states that we would

expect after infinite realizations of the model’s dynamics, given the outcome of the last trial

(see Methods). The stationary distribution of the model thus provides a measure of the
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Fig 5. HMM predictions and effects of cocaine on model behavior. A) The increase in the probability correct after cocaine. Plotted separately for both monkeys

together (gray bar), monkey B (orange) and monkey C (green), next to the increase in probability correct in simulated data from the model (white bar). Bars:

Satterthwaite approximation of the +/ 99 CI. B) Same as A, for change in perseverative errors. C) The probability that exploration was identified as the most probable

cause of each choice, before and after cocaine. Gray = both monkeys together, orange = monkey B, green = monkey C. Bars +/- SEM. D) Same as C, but with explore

choices separated according to whether these occurred during stable periods (10 trials before change point; bottom) or elsewhere in the task (top). E) The stationary

probability of the explore state, given the outcome of the previous trial (rewarded = blue, not rewarded = gray) and the cocaine condition (pre = before cocaine,

post = after). F) Illustration of the 2 free parameters in each plate of the model (4 parameters total). E) Effect of cocaine on the model parameters. Change in parameters

(Cohen’s d, post-cocaine minus baseline) in monkey B (top) and monkey C (bottom). � p< 0.05, t-test (see Table 1). Note that the slight decrease in the probability of

staying in exploration was likely due to practice (see Results). H) A cartoon illustrating the effect of cocaine on model parameters (see Table 1) in terms of an attractor

landscape. Here, exploration and rule adherence correspond to some local minima in a behavioral landscape, across which the monkeys move stochastically. Reward

outcomes act to shift the baseline landscape (light line) from strongly favoring rule adherence following reward delivery (left) to a slight preference for exploration
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energetic landscape of the behavior the model is fit to. If a state has very low potential energy

—if it is very sticky and its basin of attraction is deep—then we will be more likely to observe

the process in this state, and the stationary distribution will be shifted towards this state [54].

Therefore, we will refer to the stationary distribution probability of exploration as the “relative

depth” of exploration.

As expected, reward delivery reduced the relative depth of explore states (increased the rela-

tive depth of the rule states: Fig 5D; see Methods; β1 = -0.49, p< 0.0002). Cocaine also

decreased the relative depth of explore states (β2 = -0.05, p< 0.02). There was a significant off-

set between monkeys (β4 = -0.05, p< 0.0002) and no effect of practice (β5 = 0.0003, p = 0.4) or

interaction between reward and cocaine (β3 = 0.016, p = 0.4). This suggested that cocaine uni-

formly altered the depth of exploration, rather than the effect of reward on exploration. To test

this, we asked whether the effect of cocaine on explore state depth differed after reward deliv-

ery, compared to reward omission. There was no significant difference after controlling for the

expected effect of differing baselines (see Methods; paired t-test: p = 0.9, t(144) = -0.09, mean

change = 1%, 95% CI = -25% to 23%). Moreover, the depth of exploration was correlated

across reward outcome within the baseline sessions (both monkeys: r = 0.38, p< 0.0001,

n = 89) and cocaine delivery did not disrupt these correlations (both monkeys: Pearson’s

r = 0.23, p< 0.005, n = 147). Thus, cocaine uniformly decreased the relative depth of explora-

tion, regardless of reward outcomes.

Effects of cocaine on model parameters

Did cocaine reduce the relative depth of exploration by decreasing the depth of exploration

or by increasing the depth of rule states? To arbitrate between these interpretations, we next

asked how cocaine changed the parameters of the model. The model had 4 parameters (Fig

5E), reflecting the probability of staying in each of the two states (explore and the generic

rule state) following the two outcomes (reward delivery and omission). If cocaine largely

affected the probability of staying in exploration, then that would suggest that cocaine spe-

cifically decreased the depth of explore states. This is because the average dwell time in a

state (that is, the inverse of the rate of leaving that state) has a natural relationship to the

energetic depth of that state, relative to the energy barrier between states [55]. Alternatively,

if cocaine largely affected the probability of staying in a rule, then that would suggest that

cocaine specifically increased the depth of rule states. We also considered a third possibility:

following reward omission (right; compare to panel D). Cocaine (dark line) globally increases the duration of rule-states, which suggests that it specifically deepens the

attractor basin corresponding to rules, regardless of reward outcome. I) The autocorrelations of neighboring choices in data simulated from the model fit to pre- and

post-cocaine data. J) The same choice autocorrelations in both monkeys (left), as well as in each monkey individually (right). Ribbons = SEM. Shaded lines = bins with

significant offset between pre- and post-cocaine sessions, Holm-Bonferroni corrected for multiple comparisons. K) The reward history kernel preceding switches away

from repeated choices to the same option (min. 5 trials) before and after cocaine administration. Error bars = SEM and are smaller than the size of the symbols.

https://doi.org/10.1371/journal.pcbi.1007475.g005

Table 1. Effects of cocaine on model parameters. Mean parameter estimate (standard deviation) across all models. p(et) = probability of exploration. p(rt) = probability

of rule. Bold: significant change in post-cocaine sessions, relative to baseline within each monkey: � p< 0.05, �� p< 0.005, ��� p< 0.0001, t-test (see Results for test

statistics).

Parameter Monkey B Monkey C

Baseline Post-cocaine Baseline Post-cocaine

Reward p(rt|rt-1) 0.978 (0.008) 0.984 (0.006)�� 0.995 (0.005) 0.998 (0.002)��

p(et|et-1) 0.73 (0.17) 0.64 (0.21) 0.30 (0.30) 0.25 (0.25)

No reward p(rt|rt-1) 0.02 (0.07) 0.19 (0.14)��� 0.04 (0.11) 0.11 (0.12)�

p(et|et-1) 0.28 (0.16) 0.22 (0.17) 0.18 (0.14) 0.14 (0.12)

https://doi.org/10.1371/journal.pcbi.1007475.t001
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that cocaine had different effects following reward delivery and omission—i.e. decreasing

the depth of rules after reward omission, but increasing depth of exploring after reward

delivery. This last effect would be hard to reconcile with the idea of a unified effect on tonic

exploration.

Within each monkey, there were significant changes in the same two model parameters

in post-cocaine sessions (Table 1). Cocaine increased the probability of staying in rule states

following reward omission (monkey B: p < 0.0001, t(58) = 5.69; monkey C: p < 0.02, t(85)

= 2.57; not due to practice: β1 = 0.070, p < 0.04, β2 = 0.027, p = 0.1) and cocaine increased

the probability of staying in rule states following reward delivery (monkey B: p < 0.001, t

(58) = 3.45; monkey C: p < 0.003, t(85) = 3.06; not due to practice: β1 = 0.004, p < 0.01, β2 =

0.0002, p = 0.8). Cocaine had no significant effect on the depth of explore states following

either reward omission (β1 = -0.004, p > 0.9) or reward delivery (β1 = 0.03, p = 0.7). How-

ever, there was a trend towards a decrease in the depth of explore states with practice in

both conditions (omission: β2 = -0.03, p = 0.1, delivery: β2 = -0.06, p = 0.09), which could

indicate more efficient patterns of exploration with experience in the task. Nevertheless, the

weight of evidence suggests that cocaine selectively deepened rule states (Fig 5E): it

decreased tonic exploration via increasing the tendency to adhere to a rule, regardless of

reward outcomes.

Effects of cocaine on the momentum of decision-making

Deepening rule-state attractor basins would make rules more stable across trials, meaning

choices would be less likely to change, but not because animals are learning more slowly.

Instead, deepening rule-states would increase choice momentum: the tendency of a choice pol-

icy, once established, to persist, regardless of any external influences. If cocaine increased

choice momentum here, then we would see specific evidence of this in behavior, such as an

increase in the autocorrelation length of choices and that a larger perturbation is required to

change established choice patterns.

Indeed, choice autocorrelations were increased in model-simulated data after cocaine

administration (Fig 5I). Similarly, within the data, we found that nearby choices were more

strongly autocorrelated in the post-cocaine sessions than the pre-cocaine sessions (Fig 5J; see

Methods; sig. increase in autocorrelations at trial lags 1 through 9 in both monkeys, p< 0.05,

Holm-Bonferroni correction for multiple comparisons). This suggests that cocaine increased

the extent to which choices depended on previous choices. To determine whether the mon-

keys’ choices were less perturbable, we estimated how much external evidence was required to

change behavior before and after cocaine by examining switch-triggered reward history. Pre-

cocaine, the monkeys had close to the optimal reward history kernel shape, though they did

occasionally switch even without experiencing a reward omission (Fig 5K). However, after

cocaine exposure, the monkeys reward history kernels elongated: more evidence was required

to switch (see Methods; the optimal decay parameter would approach 0, mean decay pre-

cocaine: 0.27 ± 0.33 STD, mean decay post-cocaine: 0.66 ± 0.24 STD, difference in

means = 0.39, 95% CI = 0.29 to 0.49, sig. difference, p< 0.0001, t(145) = 7.75; no significant

change in the weight of the last outcome, p> 0.8). Thus, cocaine increased the momentum of

choices.

Discussion

These results suggest that the same process that facilitates flexibility in a dynamic environment

is responsible for at least some spontaneous lapses in rule adherence when the environment is

stable. This conclusion is based on the observation that spontaneous lapses and perseverative
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errors are not independent observations. They inversely co-varied across monkeys and ses-

sions, but not because of failures to learn the reward contingencies in any given block. Instead,

there was a common, tonic cause—both effects were the result of some latent process which

caused deviations from established decison policies, both when these deviations were useful

and when they were not. Moreover, lapses in this task were not simple errors, but instead

information-maximizing choices, in which learning was enhanced, that occurred most fre-

quently early in the task—when exploration was most valuable, but fatigue was minimal. We

were able to perturb this process with chronic cocaine exposure. This perturbation is known to

decrease flexibility by increasing perseveration [22–26,31], but here it actually improved per-

formance in a set-shifting task by adjusting the shared process underlying both lapses and per-

severative errors.

Together, these results suggest that exploration occurs tonically. This stands in contrast to

phasic views of exploration that posit that exploration occurs nearly exclusively at the

moments when it is most useful to the animal (e.g. [13,18,43]). Our use of the terms “tonic”

and “phasic” here are novel. They are inspired by terms used to describe different patterns of

locus coerrulus activity: the tonic pattern, where neurons are active continuously, without

respect to task events, versus the phasic pattern, where LC activity is locked to surprising

events or important task information [56]. It is important to note that these terms refer to dif-

ferent hypotheses about when exploration occurs, rather than what is explored. Here, explora-

tion occurred tonically, but was still directed, rather than random—meaning that it targeted

information-maximizing options [12].

To delineate precisely how cocaine altered tonic exploration, we turned to model-based

analyses of the dynamics of behavior. We rerepresented choice patterns during each session in

the transition matrices of a hidden Markov model. Analyzing these matrices allowed us to

examine the energetic landscape of behavior. Here, we found that the effects of cocaine could

be parsimoniously described as deepening attractor basins corresponding to rule states—

cocaine essentially stabilized behavioral policies. As decision-making unfolds over many trials,

deepening these attractor basins would increase the momentum of decision-making—mean-

ing that a choice policy, once established, will persist for longer and require larger perturba-

tions to change.

There is precedent for the idea that behavioral policies have momentum, both from experi-

mental [57,58] and normative [59] perspectives. In decision-making, the term “choice hystere-

sis” is used to describe the common observation that subjects tend to repeat their previous

choices more than reinforcement learning (RL) and other reward inference models naturally

predict [8,57,58]. Indeed, many common extensions to RL models increase the models’ capac-

ity to account for choice momentum [60,61], even when these extensions are described as

implementing other psychological processes such as forgetting [62–64] or optimism [65].

Moreover, adding choice hysteresis to an RL model improves model fit to cocaine-treated ani-

mals, at least some of whom exhibit both increased choice hysteresis and decreased decision

noise [66]—reinforcing our conclusion that cocaine exposure increases choice momentum.

Additional work is necessary to determine how cocaine’s effects can be explained though a RL

framework, ideally though comparing both a basic Q-learning model and a variety of the

extensions known to account for choice momentum.

Here, we found that choice momentum was not introduced by cocaine, but instead it is

an natural force in behavior that is upregulated by cocaine. From a normative perspective,

choice momentum could be due to an evolutionary adaptation to the typical statistics of nat-

ural environments, which are often strongly autocorrelated [59]—a situation where

momentum can facilitate learning [67]. This is because momentum ensures that decision-

makers integrate information over multiple samples before changing their behavior—
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essentially filtering out noise [68]. Of course, it is possible that other interventions might

regulate the likelihood of exploration through mechanisms unrelated to choice momentum,

perhaps by regulating noise in action selection [8,12,69,70] or value learning [71]. However,

it is possible that these mechanisms, like optimism and forgetting, are not altogether distinct

from changes in choice momentum. Future work is necessary to determine whether these

models can be reconciled within a common framework, perhaps by examining how changes

in the parameters of mechanistic models affect the dynamics of decision-making.

Relationship to theories of lapses and flexibility

We found that at least some lapses of task performance are due to the same exploratory mecha-

nisms that allow us to adapt to a changing environment. However, we are not proposing that

tonic exploratory noise is categorically different from other views of lapses, which cast these as

the result of memory deficits, sensorimotor noise, or attentional or executive disengagement

[3–6]. Instead, our view is that some of these constructs may be valid psychological descrip-

tions of the effect that exploratory noise has on behavior.

In the brain, exploratory noise seems to produce effects that are consistent with a disrup-

tion in prefrontal control. For example, exploratory decisions are associated with sudden

disruption in the functional organization of populations of neurons the prefrontal cortex

[8,43]. It is possible that this disorganization reflects a disruption of the prefrontal dynamics

underlying temporally extended cortical states such as working memory [72–76], motor

control [77], decision-making [78–80], and executive control [81,82]. However, disrupting

prefrontal control does not necessary imply disengagement. For example, reward-depen-

dent learning is actually enhanced in the midst of this disruption in prefrontal organization

[8] and disengaging the prefrontal cortex could allow behavior to be more tightly coupled to

the environment [83]. Thus, disrupting prefrontal control may permit discovery via selec-

tively randomize behavior with respect to information or policies held in the prefrontal cor-

tex without causing disengagement per se.

On the surface, the link between lapses and perseverative errors that we report here may

appear to conflict with previous views of errors in similar tasks as reflecting dissociable cogni-

tive processes. Many modern theories of flexibility view perseveration as measuring the inabil-

ity to inhibit a previous rule and lapses as measuring the inability to either maintain a rule or

to inhibit distraction from irrelevant options [17,84–88]. The present results can be reconciled

with these theories if increasing momentum of a rule makes the rule both easier to maintain

over time and harder for distractors to compete with in the moment. Changing the momen-

tum of a rule could decrease distraction simply by regulating the frequency of exploration, but

it could also decrease distraction by regulating the strength of rule-relevant processes. Cer-

tainly, there is some evidence internal states linked to exploration [89] also predict increased

distraction [90,91]. Future work—ideally combining cocaine administration with chronic pop-

ulation recording—is necessary to determine whether the momentum of rules is determined

by changes in the strength of rule-related processing in the brain.

Relationship to previous views of cocaine

The fact that cocaine administration increases perseveration is well-established [22–26,31]. How-

ever, here, cocaine also paradoxically improved overall performance in a set-shifting task—the

exact type of task in which perseveration should make performance worse, not better. Our obser-

vation that cocaine can improve performance in a set-shifting task does have precedent in the lit-

erature. At least one previous study reported that cocaine addicts perform better than controls in

the Wisconsin Card Sorting Task [35]. Our results suggest that this previous study was not an
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anomaly. Instead, in a within-subjects, causal study, we find that chronic cocaine administration

is sufficient to both increase perseveration and improves set-shifting task performance. Further,

we have proposed that these seemingly contradictory results can be reconciled if chronic cocaine

administration decreases tonic exploratory noise. In our view, cocaine increases perseveration

when the environment changes, but also makes it harder to spontaneously break from using a

rule—because these are opposing sides of the same underlying process.

The perseverative effects of chronic cocaine use have previously been interpreted as a shift

from goal-directed, action-outcome, or model-based control systems to habitual, stimulus-

response, or model-free control systems [22–26,92–94]. Our results are partially compatible

with these views because cocaine did make decisions more habitual—learning was slowed and

choices changed more slowly over time. However, this did not occur at a stimulus-response

level, but rather at the level of the the latent goals underlying choices. Thus, if anything,

cocaine made subjects more habitual in their use of a model. This may seem like a contradic-

tion in terms, but it is important to note that the habit/goal-directed dichotomy does not

always map cleanly onto the model-based/model-free framework [95]. We are certainly not

the first to note the link between exploratory noise and model-free/model-based decision-

making [14], but more work is needed to understand how exploration interacts with model-

based decision-making.

Our conclusion that cocaine increases the momentum of established policies is consistent

with previous observations that cocaine selectively interferes with learning when a previously-

learned response must be overcome [24,25,31] and observations that cocaine directly increases

the probability of repeating responses [93,96]. However, it is important to note that our view is

not that cocaine increases repetition at the level of choice, but instead that it increases the

momentum of latent states underlying autocorrelations in choice.

Basic insights into flexibility

The lawful relationship we find between lapses and perseverative errors was not an artificial

consequence of cocaine exposure. Instead, cocaine shifted behavior along the axis of endog-

neous co-variability that already existed between these error types. Tonic exploration was a

meaningful parameter that was controlled by cocaine administration, not introduced by it.

Thus, the neurobiological targets of cocaine exposure may be promising targets for under-

standing the neural basis of tonic exploration.

One important cortical target of chronic cocaine administration is the orbitofrontal cortex

(OFC) [25,32,97]: a region that is implicated in rule encoding [2,38,98–100]. Orbitofrontal

damage leads to a deficit in maintaining performance during stable, steady periods in the

WCST [101] and results in choice behavior that is consistent with an inability to learn or main-

tain rules ([102]; though see [103]). Of course, other cortical regions are also likely to contrib-

ute to regulating flexibility, particularly the anterior cingulate cortex [90,104], and there are

functional and structural difference in both the cingulate and the OFC in chronic cocaine

exposure [98,105]. Thus, these region are an important target for future studies of both cogni-

tive flexibility and the effects of drugs of abuse.

Cocaine exposure also has profound effects on the brains’ neuromodulatory landscape.

Chronic cocaine alters the dopamine (DA) [106–110], norepineprine (NE) [107,111,112],

acetylcholine (ACh) [108,109], and serotonin [107] systems. ACh, DA and NE, in particu-

lar, have been previously implicated in regulating exploratory decision-making

[56,113,114]. Moreover, lesions of ACh interneurons in the dorsomedial striatum may be

sufficient to produce a change in lapse rates and perseverative errors simular to those
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reported here [115]. Thus, the effects of cocaine here support hypotheses linking these neu-

romodulatory systems to exploration.

Conclusions

Why would we explore even when it has no strategic benefit? One possibility is that tonic

exploration may have conferred such substantial benefits over evolutionary time that our

brains evolved to continue to explore it even when it has no value in the moment. With tonic

exploration, there is no need to calculate the value of exploration at each time step, which

could reduce the energetic and/or computational costs of deciding when to explore [14].

Moreover, in natural environments, tonic exploratory noise could provide a valuable “inter-

rupt” on temporally extended goal states, allowing organisms to occasional search for biologi-

cally important stimuli, such as predators or prey [116]. Although these results cannot nail

down a single definitive evolutionary explanation, they provide support for the idea that con-

sidering evolutionary factors can help us to understand decision-making in a wide variety of

tasks [117–119].

Methods

General surgical procedures

All animal procedures were approved by the University Committee on Animal Resources at

the University of Rochester and were conducted in accordance with the Public Health Service’s

Guide for the Care and Use of Animals. Two male rhesus macaques (Macaca mulatta) served

as subjects. The animals had previously been implanted with small prosthetics for holding the

head (Christ Instruments), which allowed us to monitor eye position and use this as the

response modality. These procedures have been described previously [120]. To allow for

chronic cocaine self-administration, we also implanted a subcutaneous vascular access port

(VAP) in these animals (Access Technologies, Skokie, IL, USA), which was connected via an

internal catheter to the femoral vein. Additional details of the VAP implantation procedure

have been reported previously [106,121]. The VAP allowed monkeys to self-administer

cocaine daily, and obviated the need for chemical or physical restraint, which might have unin-

tended consequences for behavior. Animals received appropriate analgesics and antibiotics

after all procedures, per direction of University of Rochester veterinarians. The animals were

habituated to laboratory conditions and trained to perform oculomotor tasks for liquid reward

before training on the conceptual set shifting task (CCST) began. Both animals participated in

laboratory tasks for at least two years before the present experiment. Subjects had never previ-

ously performed a task-switching paradigm before training with this task. Previous training

history for these subjects included two types of gambling tasks [120,122], two simple choice

tasks [123,124], and a foraging task [125].

Self-administration protocol

The monkeys sat in a primate chair placed in a behavioral chamber with a touchscreen (ELO

Touch Systems, Menlo Park, CA, USA). Syringe Pump Pro software (Version 1.6, Gawler,

South Australia) controlled and monitored a syringe pump (Cole Parmer, Vernon Hills, IL,

USA), which delivered cocaine into the monkeys’ VAP. Monkeys pressed a centrally located

visual cue on the touchscreen to obtain venous cocaine injections (cocaine provided by

National Institutes of Drug Abuse, Bethesda, MD, USA), delivered in a 5 mg/ml solution at a

rate of 0.15 ml/s. Monkeys were acclimated to cocaine self-administration across ten days of

training, during which the response requirement and dose increased from 3 responses/reward
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(FR3) and 0.1 mg/kg (0.8 mg/kg of cocaine daily) to 30 responses/reward (FR30) and 0.5 mg/

kg (4 mg/kg of cocaine daily). Monkeys were given 3 hours to complete infusions each day (in

practice, monkeys typically completed the all 8 infusions within 1–2 hours). Monkeys self-

administered cocaine 5 days a week.

Behavioral task

Specific details of this task have been reported previously [37–40]. Briefly, the present task was

a version of the CSST: an analogue of the WCST that was developed for use in nonhuman pri-

mates [36]. Task stimuli are similar to those used in the human WCST, with two dimensions

(color and shape) and six specific rules (three shapes: circle, star, and triangle; three colors:

cyan, magenta, and yellow; Fig 1A). Choosing a stimulus that matches the currently rewarded

rule (i.e. any blue shape when the rule is blue; any color of star when the rule is star) results

visual feedback indicating that the choice is correct (a green outline around the chosen stimu-

lus) and, after a 500 ms delay, a juice reward. Choosing a stimulus that does not match the cur-

rent rule results in visual feedback indicating that the choice is incorrect (a red outline), and

no reward is delivered after the 500 ms delay.

The rewarded rule was fixed for each block of trials. At the start of each block, the rewarded

rule was drawn randomly. Blocks lasted until monkeys achieved 15 correct responses that

matched the current rule. This meant that blocks lasted for a variable number of total trials

(average = 22.5), determined by both how long it took monkeys to discover the correct objec-

tive rule and how effectively monkeys exploited the correct rule, once discovered. Block

changes were uncued, although reward-omission for a previously rewarded option provided

noiseless information that the reward contingencies had changed.

On each trial, three stimuli were presented asynchronously, with each stimulus presented at

the top, bottom left, or bottom right of the screen. The color, shape, position, and order of sti-

muli were randomized. Stimuli were presented for 400 msec and were followed by a 600-msec

blank period. (The blank period was omitted from Fig 1A because of space constraints). Mon-

keys were free to look at the stimuli as they appeared, and, though they were not required to

do so, they typically did [37]. After the third stimulus presentation and blank period, all three

stimuli reappeared simultaneously with an equidistant central fixation spot. When they were

ready to make a decision, monkeys were required to fixate on the central spot for 100 msec

and then indicate their choice by shifting gaze to one stimulus and maintaining fixation on it

for 250 msec. If the monkeys broke fixation within 250 milliseconds, they could either again

fixate the same option or could change their mind and choose a different option (although

they seldom did so). Thus, the task allowed the monkeys ample time to deliberate over their

options, come to a choice, and even change their mind, without penalty of error.

Data analysis

Data were analyzed with custom MATLAB scripts and functions. All t-tests were two-sample,

two-sided tests, unless otherwise noted. All generalized linear models (GLMs) included a

dummy-coded term to account for a main effect of monkey identity (1 for monkey B, 0 for

monkey C) and were fit to session-averages, rather than individual trials. One session (1/147)

was excluded from these analyses because one of its transmission matrices did not admit a sta-

tionary distribution. No data points were excluded for any other reason. Observation counts

for each analysis are reported in figure legends and/or Results.

Operational definitions of errors. Lapses were defined as errors that occurred during sta-

ble periods (the 10 trials immediately preceding change points) and deviated from the previous

choice’s color or shape. Lapse-like errors were defined as errors that deviated from the
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previous choice’s color or shape, but unlike lapses, lapse-like errors could occur anywhere in

the session. Perseverative errors were defined as errors that occurred in the period of maximal

learning (5 trials following change points) that did not deviate from the previous choice’s color

or shape. The number of errors varied widely in frequency across sessions due to differences in

how much the monkeys used a random versus directed strategy for exploration (errors

occurred on 22% to 48% of the 5 post-change-point trials), so perseverative error frequency

was normalized to the total number of error trials in the post-change-point epoch.

Outcome effect index. We quantify the amount of learning within session or from spe-

cific past rewards with the “outcome effect index”. This is essentially a measure of how much

some past reward outcome received on some past trial τ influences the probability of repeating

either of the past choice’s features on the current trial. We calculate this as:

pðrepeattjrewardt� t ¼ 1Þ � pðrepeattjrewardt� t ¼ 0Þ

pðrepeattÞ

Where normalizing by p(repeat) controls for different tendencies to repeat choices, irre-

spective of reward. This value is then averaged over color and shape to produce the outcome

effect index reported in the text and figures.

To estimate the rate of learning from outcomes received during exploration and rules (Fig

4E), we predicted the outcome effect index for previous trials -1 through -5 using a 3-parame-

ter decaying exponential function:

outcome effectt ¼ offsetþ scale � eta

Where the offset term captures an DC offset between the two conditions, the scale captures

the outcome effect of the last trial (trial -1), and the alpha parameter captures the rate of decay

in this influence over the following trials—that is, the learning rate.

Expected number of change 1 and change 2 lapses. To determine if monkeys were using

directed exploration during lapses, we calculated the rate at which lapses would change from

previous choices in either 1 or 2 dimensions by chance. There were two classes of last-trial/cur-

rent-trial pairs. In the first, the identical choice from the last trial was available, so the only

choices that could possibly lead to lapses were both change 2 dimension choices. In the second,

the identical choice from the last trial was not available, so lapses would either target the non-

rewarded feature from the last choice (changing 1 dimension) or target the other option

(changing 2 dimensions). There were 3! = 6 possible permutations of color with respect to

shape, 2 of which would be of the first type for any given choice, with a 0% chance of changing

only 1 dimension, and 4 of which would be of the second, with a 50% chance of changing only

1 dimension. This gave us an expected probability of changing 1 dimension of (2/6) (0/2) + (4/

6) (1/2) = 1/3 and an expected probability of changing 2 dimensions of (2/6) (2/2) + (4/6) (1/2)

= 2/3. To account for this difference in chance levels, the counts of change 1 dimension and

change 2 dimension errors were normalized by dividing by the expected count (product of the

expected probability of lapse type and the total lapse count) in Fig 2G.

Identifying information-maximizing choices. To determine what choice(s) would maxi-

mize information about which feature was currently the best, we measured the information

gain from different choice strategies in a model with a restricted, 1-trial memory. This was a

reasonable approximation because the effects of previous choices and rewards tend to decay

exponentially, meaning that the last trial is the one with the single biggest influence on choice.

Assuming all possible pasts before the last choice at time t-1, we uniformly initialize the prior
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that each feature (f) is the best (f�) of the Nf features:

p̂ðft� 1 ¼ f �Þ ¼
1

Nf

After making the last choice at time t-1, we estimate the likelihood that the feature we chose

was the best in a reward-dependent fashion. If the monkeys were rewarded:

pðft� 1 ¼ f �Þ ¼
1

2
; if choice ¼ f

0; otherwise

8
<

:

If the monkeys were not rewarded:

pðft� 1 ¼ f �Þ ¼
0; if choice ¼ f

1

Nf � 2
; otherwise

8
><

>:

Small amounts of noise, |N(0, 10−4)|, were added to all 0’s so that information would be

computable. We then estimate which choice should be best on the current trial by multiplying

the prior and posterior:

p̂ðft ¼ f �Þ ¼ p̂ðft� 1 ¼ f �Þpðft� 1 ¼ f �Þ

Re-normalizing this to be a valid probability distribution gives a new prior about which

stimulus feature is best going into trial t. To determine what choice at trial t would maximize

information gain relative to this prior, we then simulate choices that differed in 0, 1, or 2 stim-

ulus features from trial t-1, update the likelihood as we did previously, and then generate a

new posterior estimate of which feature is best going forward:

p̂ðftþ1 ¼ f �Þ ¼ p̂ðft ¼ f �Þpðft ¼ f �Þ

We reasoned that the information-maximizing choice would be the one that caused the

largest drop in uncertainty in this distribution. That is, it would be the choice, c, that maxi-

mizes:

information gain ¼ Ht � Htþ1

The uncertainty about what feature was the best at time t is the prior entropy:

Ht ¼ �
X

f

p̂ðft ¼ f �Þlog
2
p̂ðft ¼ f �Þ

Because there were two possible futures—one where the animal would be rewarded, and

one where they were not and the likelihood of these futures depended on choice—we calcu-

lated the estimated future entropy as a weighted average of these possible futures:

Htþ1 ¼ �
X

f

X

r20;1

pðrjc ¼ f Þp̂ðftþ1 ¼ f �jrÞlog
2
p̂ðftþ1 ¼ f �jrÞ

Where we estimated the probability of reward for choosing each feature, p(r | c = f) by tak-

ing advantage of the fact that the probability that the monkeys would be rewarded for choosing

a feature is proportional to the likelihood that this feature is the best. This means we can

approximate the monkey’s internal estimate of reward probability from their prior on what
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feature is the best:

pðrjc ¼ f Þ / p̂ðftþ1 ¼ f �Þ

Supplemental Fig 2 illustrates both this estimated probability of reward and the the infor-

mation gain for choices that differ in 0, 1, or 2 features.

Differentiating the effects of cocaine treatment from practice. Task performance

reached stable levels in both monkeys before the baseline, pre-cocaine sessions began (Fig 2A).

Nevertheless, we were concerned that putative effects of cocaine self-administration might

instead be trivial consequences of the increased experience with the task in the post-cocaine

sessions. Any effect of cocaine treatment would produce a step change in behavior that was

aligned to the start of cocaine administration. Conversely, the effects of practice would change

gradually across sessions. Therefore, to determine whether individual behavioral effects were

due to practice or cocaine, we fit the following GLM to the session-averaged behaviors of inter-

est:

behavior ¼ b0 þ b1 � txþ b2 � sessionþ b3 �monkeyþ Z

Where “tx” is a logical vector indicating whether the session was conducted before or after

chronic cocaine self-administration (a step change term) and “session” was a vector of session

number within the experiment for each monkey (a gradual ramping term). One additional

term “monkey” accounted for the random effect of monkey identity, and the model included

the standard intercept and noise terms (β0 and η, respectively). Thus, β1 captured any offset

due to chronic cocaine administration, while β2 captured any effect of practice for each

analysis.

Probability of novel choices. Only 3 of the 9 possible stimuli (i.e. 9 combinations of 3 col-

ors and 3 shapes) were available on each trial, so the likelihood of repeating choices that shared

neither feature was constrained by the available options. Therefore, we calculated the monkeys’

probability of choosing each number of feature repeats as the total number of times a certain

number of features was repeated, divided by how many times it was possible to repeat that

number of features. Both terms were calculated within session.

Hidden Markov model. In the HMM framework, choices (y) are “emissions” that are

generated by an unobserved decision process that is in some latent, hidden state (z). Latent

states are defined by both the probability of each emission, given that the process is in that

state, and by the probability of transitioning to or from each state to every other state. Straight-

forward extensions of this framework allow inputs, such as rewards, to influence state transi-

tions [52], in which case the latent states can be thought of as a discretized value function.

The observation model for each hidden state is the probability choosing each option when

the process is in that state. These emissions models differed across the two broad classes of

states in the model—the explore states and rule states—based on the fact that there were two

different dynamics in the choice behavior: one reflecting random choosing while exploring

and one reflecting long staying durations due to persistent rules (S1 and S2 Figs). Therefore,

the observation model for any choice option n during explore states was:

pðyt ¼ njzt ¼ exploreÞ ¼
1

N
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Where N is the number of stimuli that were presented (i.e. N = 3). During rules, the obser-

vation model was conditioned on whether or not each stimulus is in the current rule set:

pðyt ¼ njzt ¼ rulei; n 2 ruleiÞ ¼ 1

pðyt ¼ njzt ¼ rulei; n =2 ruleiÞ ¼ 0

The latent states in this model are Markovian meaning that they are time-independent.

They depend only on the most recent state (zt) and most recent reward outcome (ut):

Pðztjzt� 1; ut� 1; yt� 1; . . . ; z1; u1; y1Þ ¼ Pðztjzt� 1; ut� 1Þ

This means that the probabilities of each state transition are described by reward-dependent

transmission matrix, Ak = {ai,j}k = P(zt = j | zt-1 = i, ut-1 = k) where k �{rewarded, not rewarded}.

There were 7 possible states (6 rule states and 1 explore state) but parameters were tied across

rule states such that each rule state had the same probability of beginning (from exploring)

and of sustaining itself. Similarly, transitions out of explore were tied across rules, meaning

that it was equally likely to start using any of the 6 rules after exploring. Because monkeys

could not divine the new rule following a change point and instead had to explore to discover

it, transitions between different rule states were not permitted. The model assumed that mon-

keys had to pass through explore in order to start using a new rule, even if only for a single

trial. Thus, each plate k of the transition matrix had only two parameters, meaning there were

a total of 4 parameters in the reward-dependent model.

The model was fit via expectation-maximization using the Baum Welch algorithm [53,126].

This algorithm finds a (possibly local) maxima of the complete-data likelihood, which is based

on the joint probability of the hidden state sequence Z and the sequence of observed choices Y,

given the observed rewards U:

LðYjY;Z;UÞ ¼ PðZ;YjU;YÞ

The complete set of parameters Θ includes the observation and transmission models, dis-

cussed already, as well as an initial distribution over states, typically denoted as π. Because

monkeys had no knowledge of the correct rule at the first trial of the session, we assumed the

monkeys began in the explore state. The algorithm was reinitialized with random seeds 100

times, and the model that maximized the observed (incomplete) data log likelihood was ulti-

mately taken as the best for each session. The model was fit to individual sessions, except to

generate simulated data, in which case one model was fit to all baseline sessions and a second

to all post-cocaine sessions. To decode latent states from choices, we used the Viterbi algo-

rithm to discover the most probable a posteriori sequence of latent states [53].

To simulate data from the model, we created an environment that matched the monkeys’

task (choices between 3 options with 2 non-overlapping features and a randomly selected

rewarded rule that changed after 15 correct trials). We then probabilistically drew latent states

and choice emissions as the model interacted with the environment. The only modification to

the model for simulation was that the choice of rule state following an explore state was con-

strained to match one of the two features of the last choice, chosen at random.

Stationary distribution. To gain insight into how cocaine changed the likelihood of rule

states following reward delivery and omission, we examined the stationary distributions of the

model. The transmission matrix of a HMM is a system of stochastic equations describing prob-

abilistic transitions between each state. That is, each entry of a transmission matrix reflects the

probability that the monkeys would move from one state (e.g. exploring) to another (e.g. using

a rule) at each moment in time. In this HMM, there were two transmission matrices, one

describing the dynamics after reward delivery and one describing the dynamics after reward
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omission. Moreover, because the parameters for all the rule states were tied, each transition

matrix effectively had two states—an explore state and a generic rule-state that described the

dynamics of all rule states. Each of these transition matrices (Ak) describes how the entire sys-

tem—an entire probability distribution over explore and rule states—would evolve from time

point to time point given the outcome of the previous trial, k. You can observe how these

dynamics would change any probability distribution over states π by applying the dynamics to

this distribution:

ptþ1 ¼ ptAk

Over many iterations of these dynamics, ergodic systems will reach a point where the state

distributions are unchanged by continued application of the transmission matrix as the distri-

bution of states reaches its equilibrium. That is, in these systems, there exists a stationary distri-

bution, π�, such that:

p� ¼ p�Ak

If it exists, this distribution is a (normalized) left eigenvector of the transition matrix Ak

with an eigenvalue of 1, so we solved for this eigenvector to determine the stationary distribu-

tion of each Ak, if it had one. (Only one of the Ak matrices did not admit a stationary distribu-

tion, so this session was not included in analyses related to this measure.)

Analyzing stationary distributions. To determine how cocaine affected the relative

depth of exploration and the generic rule state, we constructed a GLM. The model included

terms to describe the effects of reward, cocaine, and the interaction between the two on the

depth of exploration. This interaction allowed the model to describe a phasic, reward-depen-

dent effect of cocaine on the depth of exploration, if it were present:

depth ¼ b0 þ b1ðrwdÞ þ b2ðcocaineÞ þ b3ðrwd� cocaineÞ þ . . .

b4ðmonkeyÞ þ b5ðsessionÞ

The model thus accounted for any offset between monkeys (“monkey”, 1 for monkey B, 0

for monkey C) or practice effects (“session”). It also included terms to describe the effects of

reward (“rwd”, 1 for reward delivery, 0 for omission), cocaine (“cocaine”, 1 for pre-cocaine

baseline sessions, 0 for post-cocaine sessions), and the interaction between reward and

cocaine. This allowed the model to describe a phasic, reward-dependent effect of cocaine on

model dynamics or a tonic, reward-independent form of exploration.

Comparing changes in probabilities. We calculated log odds ratios to compare the mag-

nitude of changes in probability when baseline probabilities differed. Because probabilities are

bounded, they are necessarily nonlinear transformations of an unbounded latent process of

interest. This means that a fixed change in an underlying linear process can produce very dif-

ferent magnitude changes in probability, depending on the baselines. For intuition, picture a

logistic function—a typical nonlinear transformation used to covert linear observations into

probabilities. The effect of an equivalent change in the x-axis on the y-axis is depends on the

baseline position on the x-axis: an identical shift on the x-axis has a large effect on y when x

starts close to the midpoint of the function, but a small effect on y when x starts close to either

end. The logit transformation linearizes the relationship between different observed probabili-

ties because it is the inverse of the the logistic function:

logitðpÞ ¼ logistic� 1 ¼ log
p

1 � p

� �
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The difference between log odds (also known as the log odds ratio) then provides a linear-

ized measure of effect magnitude that less sensitive to differing baseline levels. It is:

logðodds ratioÞ ¼ logitðp1Þ � logitðp2Þ

Choice autocorrelations. To measure the autocorrelations in choice in the real and

model-simulated data, we coded each choice as 6-element indicator vector with each entry cor-

responding to a logical of whether the animal chose a particular stimulus feature (shape and

color). We then calculated the choice autocorrelations independently for each stimulus feature

(Pearson’s correlation). The average across the 6 stimulus features was taken as the mean

choice autocorrelation.

Switch-triggered reward history kernel. To get a model-free estimate of how monkeys

integrated past rewards when deciding to change their behavior, we calculated the effects of

previous outcomes on switch decisions (decisions to change either color or shape) that

occurred after a minimum of 5 decisions to the same color or shape (identical results with 10

decisions). We then fit a two-parameter decaying exponential curve:

weight ¼ 1 � last � e� x�decay� 1

Here, “last” corresponds to the probability that the animal was not rewarded on the last

trial before a switch, and “decay” corresponds to the rate of decay in the switch triggered

reward history kernel. Because reward omissions give perfect information that you should

change your behavior in this context, the optimal decision maker would switch away from a

good color or shape if and only if they were not rewarded on the last trial. This means that,

provided the choice matched the rule and was reliably rewarding, the optimal decision maker

would have last = 0 and decay approaching 0.

Supporting information

S1 Fig. Lapses do not anticipate change points. Because rule changes were triggered by 15

correct trials, it was possible that the monkeys anticipated rule changes by counting rewards. If

this was the case, they might try to deviate from established policies in anticipation of the rule

change, in order to avoid an inevitably incorrect trial. However, there was no increase in lapse

rates during the stable epoch (the 10 trials before a rule change) in either the pre- or post-

cocaine sessions (left). Similarly, neither lapses that differed in 1 or 2 dimensions from the pre-

vious choice anticipated the change points in the baseline sessions (right). Inset) Same, aligned

post-change point. Here, the substantial increase in the rate of change 1 dimensional lapses on

the first trial is due to the inevitable error—if subjects are following a stable policy on this trial,

they will inevitably commit an error and will have a 50% chance of also changing 1 dimension

from their previous choice (because the probability that this trial will only offer options that

match the last choice in 1 dimension is 50%). Following this error feedback, the rate of change

2 dimensional lapses spikes, likely due to a self-avoiding, “smart” exploration strategy after

change points.

(EPS)

S2 Fig. Information gain and probability of reward for choosing stimuli that differ in 0, 1,

or 2 dimensions from previous choices. Related to Figs 2G and 4D. Information gain and

reward probability are plotted separately for trials following reward omission (left) and reward

delivery (left). Following reward omission, the choice that maximizes both the probability of

reward and information is the one that deviates in 2 stimulus dimensions from the last choice.
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Following reward delivery, the information-maximizing choice is the one that differs in 1

dimension, while the reward-maximizing choice would change 0 dimensions (repeating

exactly the previous choice).

(EPS)

S3 Fig. Hidden Markov Model development (related to Figs 4 and 5). To determine whether

an HMM was an appropriate descriptive model for this dataset, we first asked whether there

were different behavioral dynamics that might correspond to using a rule and exploring. One

way to do this is to examine the distribution of runs of repeated choices within some choice

dimension (Ebitz, Albarran, & Moore, 2018). If monkeys are exploiting a rule, then they would

have to repeatedly choose options that are consistent with this rule. During a rule, runs of

repeated choices—or interswitch intervals—would be long. However, exploration, monkeys

need to briefly sample the options to determine whether or not they are currently rewarded.

That is, during exploration runs of repeated choices should be very brief: on the order of single

trials.To the extent that choice runs end stochastically (an assumption of the HMM frame-

work), inter-switch intervals will be exponentially distributed. Moreover, if there are multiple

latent regimes (such as exploring and rule-following), then we would expect to see inter-switch

intervals distributed as a mixture of exponential distributions, because choice runs have a dif-

ferent probability of terminating in each latent regime. The distribution of inter-switch inter-

vals (n interswitch intervals = 49,059) resembled an exponential (left), but was better

described by a mixture of two discrete exponential distributions (blue lines; 1 exponential: 1

parameter, log-likelihood = -142077.0, AIC = 284156.1, AIC weight < 0.0001, BIC = 284165.6,

BIC weight < 0.0001) than a single distribution (black line; 2 exponential: 3 parameters, log-

likelihood = -119773.2, AIC = 239552.4, AIC weight = 1, BIC = 239580.7, BIC weight = 1).

Adding additional exponential distributions did not improve model fit (right), suggesting that

there were only two regimes (3 exponentials: 5 parameters, log-likelihood = -119773.2,

AIC = 239556.4, AIC weight < 0.14, BIC = 239603.7, BIC weight < 0.0001; 4 exponentials: 7

parameters, log-likelihood = -119773.2, AIC = 239560.4, AIC weight < 0.02, BIC = 239626.6,

BIC weight < 0.0001). The best-fitting model was thus the two-exponential mixture. It had

one long-latency component (half life = 9.0), consistent with a persistent rule-following

response mode. It also had one short latency component (half life 1.4), consistent with rapidly

shifting between options.

(EPS)

S4 Fig. Short choice runs occur more frequently than expected (related to Figs 4 and 5).

Because rules only operated on either the color or shape of the option, we quantified the dura-

tion of inter-switch intervals independently within the color and shape domains (i.e. a

magenta star choice followed by a magenta circle choice be counted as part of the same choice

run in the color domain, but would part of different choice runs in the shape domains). This

meant that choices would inevitably be randomized within one feature domain during

repeated choices in the other domain. Thus, the existence of a mode with a short half-life is not

sufficient evidence of short-latency search dynamics in this task. However, if randomization in

the other domain was the sole cause of short duration samples, then observations from the

short sampling mode would occur exactly as frequently as observations from the persistent

mode. However, short choice runs occurred more frequently than expected. To determine

this, we calculated the expected time in each state as the product of the average run length in

that state and the probability of being in that state. Then, we normalized the expected time in

the short state by the sum of expected times in all states. That is, this measure would be at 0.5 if

observations from the short state were equally as frequent, and greater than 0.5 if they were

more frequent. The expected number of short state observations was significantly greater than
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0.5 (both subjects, paired t-test, p< 0.0001, t(88) = 17.02; subject B: p< 0.0003, t(26) = 4.18;

subject C, p< 0.0001, t(61) = 27.6), indicating that both subjects had more frequent short

duration samples than would be expected if those short duration samples were merely caused

by choices along a different dimension. Thus, both subjects exhibited strong evidence for a

separate search state, in which they made short duration runs of choices to the different

options.

(EPS)

S5 Fig. An input-output HMM accounts for reward-dependent decisions (related to Figs 4

and 5). Inter-switch intervals were largely exponential—consistent with the Markovian

assumptions of an HMM—and we observed different search and rule dynamics. However, it is

important to note that in the log plot (top left), there were significant deviations from the pre-

dictions of simple exponential mixture model. These were likely due to the changes in reward

contingencies that were triggered each time 15 correct trials were completed. To account for

this obvious dependence on reward, we extended a simple 2 parameter HMM model to allow

state transition probabilities to depend on previous reward outcomes [52]. Accounting for this

reward dependence (4-parameter ioHMM) reproduced these dynamics (bottom left) and

improved model fit in both monkeys (right; both monkeys: 2 parameter HMM, log-likelihood

= -39614, 4 parameter ioHMM, log-likelihood = -30240, log-likelihood ratio test: statistic

18749, p< 0.0001; monkey B: HMM, log-likelihood = -12973, ioHMM = -11714, log-likeli-

hood ratio test: statistic = 2518.7 p< 0.0001; monkey C: HMM, log-likelihood = -26641,

ioHMM = -18526, log-likelihood ratio test: statistic = 16230, p< 0.0001).

(EPS)

S6 Fig. Model performance as a function of parameter combinations. To determine which

parameter combinations for this model would be optimal in this task, we simulated the mod-

el’s performance for a variety of parameter combinations (15,000 simulated datasets of 100 ses-

sions of 500 trials each under uniformly sampled parameters). Mean reward probability of

reward for each parameter alone (left; +/- variance of a 10-degree polynomial curve fit) and for

important pairs of parameters (right) are illustrated here. The optimal parameter combination

is shown with an asterisk (�) on each graph and was calculated as the geometric mean parame-

ters of the 7 sessions within 1% reward of the maximum reward probability that we simulated.

This optimum corresponded to the parameters p(stay in rule | no reward) = 0.0436, p(stay in

explore | no reward) = 0.5277, p(stay in rule | reward) = 0.9971, p(stay in explore | reward) =

0.0325. Note that performance increases monotonically with p(stay in rule | reward), the

parameter that the lapse rate was most sensitive to (correlation between this parameter and

lapse rate: -0.81).

(EPS)

S7 Fig. Frequency of HMM-labeled states systematically differs at change points (related

to Fig 4B). Right) Dark gray line indicates the probability that exploration was identified as

the most probably state ± STD. The light gray line is the mean over sessions of label-shuffled

data (100 permutations per session). Dots above the lines indicate bins where the unshuffled

data was more likely to be explore-labeled than the shuffled data in greater than chance num-

ber of sessions (2.5%). Dots below the lines indicate bins where the unshuffled data was less

likely to be explore-labeled in greater than chance number of sessions (2.5%). The real dataset

was either more or less exploratory than the shuffled dataset in every bin, indicating that explo-

ration was strongly structured with respect to the change points. Note that bin 14 is labeled as

both greater and lower than chance. This is because exploration was above chance in a signifi-

cant number of sessions and also below chance in a different significant number of sessions.
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Left) State probabilities for each individual session (dark gray) and label-shuffled data (light

gray).

(EPS)
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