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SUMMARY

In uncertain environments, decision-makers must
balance two goals: they must ‘‘exploit’’ rewarding
options but also ‘‘explore’’ in order to discover
rewarding alternatives. Exploring and exploiting
necessarily change how the brain responds to iden-
tical stimuli, but little is known about how these
states, and transitions between them, change
how the brain transforms sensory information into
action. To address this question, we recorded neural
activity in a prefrontal sensorimotor area while
monkeys naturally switched between exploring and
exploiting rewarding options. We found that explora-
tion profoundly reduced spatially selective, choice-
predictive activity in single neurons and delayed
choice-predictive population dynamics. At the
same time, reward learning was increased in brain
and behavior. These results indicate that exploration
is related to sudden disruptions in prefrontal senso-
rimotor control and rapid, reward-dependent reor-
ganization of control dynamics. This may facilitate
discovery through trial and error.

INTRODUCTION

In complex environments, reward contingencies are seldom fully
known. In these circumstances, there is a limit to the effective-
ness of an ‘‘exploitative’’ strategy. Trying to maximize immediate
reward by repeatedly choosing known-value options risks
missed opportunities to discover better alternatives. Thus, deci-
sion-makers occasionally deviate from exploiting in order to
‘‘explore’’—they sample alternative actions, gather information
about the environment, and thereby increase the potential for
future reward (Kaelbling et al., 1996; Sutton and Barto, 1998).
Designing a system flexible enough to both exploit and explore
is a classic problem in reinforcement learning (RL) (Sutton
and Barto, 1998), and its solution is a prerequisite for intelligent,
adaptive behavior in natural decision-makers (Rushworth and
Behrens, 2008). However, only a few studies have examined

how exploration is implemented in the brain (Daw et al., 2006;
Quilodran et al., 2008; Pearson et al., 2009; Kawaguchi et al.,
2015), and it remains unclear how the mapping of sensory input
onto motor output is adjusted in order to pursue these different
strategies in an otherwise identical environment.
The brain is biased toward representing and selecting

rewarding options. For example, neurons in oculomotor regions
such as the frontal eye field (FEF) (Leon and Shadlen, 1999;
Roesch andOlson, 2003, 2007; Ding and Hikosaka, 2006; Glaser
et al., 2016) and the lateral intraparietal area (LIP) (Platt and
Glimcher, 1999; Sugrue et al., 2004) signal high-value gaze
targets more robustly than low-value targets. At the behavioral
level, high-value targets cause rapid, vigorous orienting
responses (Takikawa et al., 2002; Reppert et al., 2015), and pre-
viously rewarded options continue to capture gaze and bias
attention even when explicitly devalued (Takikawa et al., 2002;
Anderson et al., 2011; Hickey and van Zoest, 2012). This bias im-
proves the detection of goal-relevant targets andwould help dur-
ing exploitation. However, it interferes with the goal of exploring
alternative options.
How can the brain efficiently overcome its reward-seeking

bias in order to discover better options? One way might be to
choose more randomly during exploration, perhaps by adding
noise or indeterminacy to neural computations involved in choice
and attention. This is an efficient way to produce exploration in
artificial agent (Sutton and Barto, 1998), and humans also
seem to explore largely randomly (Wilson et al., 2014). However,
random selection in behavior need not imply an indeterminate
selection process in the brain, and there is no empirical evidence
for indeterminate selection. Alternatively, the representations of
chosen options could be enhanced during exploration, perhaps
due to some bias toward uncertain options (Rushworth and Beh-
rens, 2008; Schultz et al., 2008). This latter hypothesis might
have cognitive consequences. For example, in regions involved
in directing attention, increasing choice-selective representa-
tions could increase reward learning, because attention facili-
tates learning (Pearce and Hall, 1980; Swan and Pearce, 1988;
Pearce and Bouton, 2001; Niv et al., 2015). Such an observation
could provide a mechanistic basis for normative accounts that
predict that learning should increase during exploration (Kael-
bling et al., 1996; Sutton and Barto, 1998; Yu and Dayan,
2005; Daw et al., 2006; Cohen et al., 2007; O’Reilly, 2013). Of
course, learning could increase during exploration via other
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mechanisms. It remains unclear whether learning is increased
during exploration in biological decision-makers, and explora-
tionmay just as readily decrease choice selectivity as increase it.

Neural structures involved in directing attention and choice,
such as the FEF, are ideally suited to test how the brain imple-
ments exploration. FEF neurons are highly spatially selective:
their firing rates reliably signal the location of to-be-chosen tar-
gets, presented either in isolation or among distractors (Bizzi,
1968; Bruce and Goldberg, 1985; Schall and Hanes, 1993;
Umeno and Goldberg, 1997; Schall and Thompson, 1999; Coe
et al., 2002). These spatially selective signals are remarkably pre-
cise and choice predictive in comparison to those found in other
prefrontal regions (Funahashi et al., 1990; Hayden and Platt,
2010; Purcell et al., 2012; Chen and Stuphorn, 2015). Further-
more, this selective activity in the FEF is both correlatively and
causally implicated in the control of both covert attention (Kast-
ner et al., 1998; Moore and Fallah, 2001, 2004; Moore and Arm-
strong, 2003; Thompson et al., 2005; Armstrong et al., 2009) and
saccadic target selection (Bizzi, 1968; Bruce and Goldberg,
1985; Schall and Hanes, 1993; Umeno and Goldberg, 1997;
Schall and Thompson, 1999; Coe et al., 2002), making the region
ideally suited to address questions about the link between selec-
tive attentional signals and changes in learning rates across
states. Finally, although choice-predictive spatial selectivity in
the FEF is weakly modulated by the expected value of chosen
targets (Leon and Shadlen, 1999; Roesch and Olson, 2003,
2007; Ding and Hikosaka, 2006; Glaser et al., 2016), it remains
unclear whether FEF target selectivity will differ across explore
and exploit goals.

To test these hypotheses, we trained monkeys on a task that
encouraged transitions between exploration and exploitation,
namely a restless k-armed bandit (Kaelbling et al., 1996; Sutton
and Barto, 1998), while we recorded from small populations of
FEF neurons. We first developed a novel method to identify
and characterize the monkey’s goal state on each trial, and
then examined how spatially selective, choice-predictive signals
in the FEF changed across those states. We found that FEF
selectivity was profoundly disrupted during exploration and
that spatially selective, choice-predictive population dynamics
are delayed and disorganized, consistent with the hypothesis
that indeterminacy may facilitate exploratory choice.

RESULTS

In the task, monkeysmade a sequence of choices between three
physically identical targets, indicating their choice via saccades
to one target. Each target location offered some probability of
reward, which walked unpredictably and independently over
time (Figure 1A; STAR Methods). Because monkeys could only
infer the current value of each target via selecting it, monkeys
were induced to intersperse exploitative, reward-maximizing
choices with exploratory choices, in order to learn about the
reward contingencies of other targets.

Monkeys learned about the reward. They earned a higher rate
of reward (83.1% of trials ± 5.7%SD) than would be expected by
random choice (70.6%; 10 sessions in monkey B, p < 0.0002,
t[9] = 8.5; 17 sessions in monkey O, p < 0.0001, t[17] = 8.5) or
trial-shuffled choices (72.6%, monkey B, p < 0.0002, t[9] = 6.2;

monkey O, p < 0.0001, t[17] = 10.0). To determine whether mon-
keys were tracking reward history, we used cross-validated,
multinomial logistic regression to predict choice from past
reward, and estimate subjective value (STAR Methods). The
average half-life of a reward outcome was 2.36 trials (Figure S2;
median, 2; range, 1.5–4), and accounting for multiple previous
outcomes improved predictions of choice behavior in every ses-
sion, compared to a one-trial-back model (a win-stay, lose-shift
strategy) or the best-t model with outcomes shuffled within
choices (all AIC and BIC values smaller for the non-shuffled
reward-history model; all AIC and BIC weights for the shuffled
and one-trial-back models <0.0001). Thus, monkeys picked
the best option more often than chance by integrating reward in-
formation over multiple trials.
We developed a novel method to determine whether each

choice was exploratory or exploitative. Previous studies (Daw
et al., 2006; Pearson et al., 2009; Jepma and Nieuwenhuis,
2011) have fit a delta-rule RL model to behavior, then labeled
choices that are inconsistent with the model’s values as ‘‘explor-
atory,’’ under the rationale that exploration is a non-reward-
maximizing goal. This approach produced similar, albeit weaker,
results to those reported here (delta-rule learning models fit to
each monkey with a softmax learning rule, mean target selec-
tivity index during ‘‘explore’’ choices = 0.065, mean during
‘‘exploit’’ choices = 0.077, mean difference within neurons =
!0.01, 95% CI = !0.002 to !0.022, paired t test within neurons,
p < 0.02, t[552] = !1.91). However, a non-reward-maximizing
goal would produce choices that are orthogonal to value, not
the errors of reward maximization that are identified as explo-
ration in this approach. For this and other reasons (STAR
Methods), we looked for other patterns in the choice that could
be used to infer latent explore and exploit goals.
Although there are many different algorithms for exploration in

artificial agents, one frequent feature is that exploration is imple-
mented via adding some variability to a value-based decision
rule (Kaelbling et al., 1996; Sutton and Barto, 1998). That is,
exploration occurs when decision noise or additional information
causes some choices to deviate from the currently preferred
option and toward an alternative. Practically, this means that
explore choices are disconnected from their neighboring
choices, whose targets otherwise change slowly according to
long timescale fluctuations in the value of the options. Indeed,
artificial agents, exploring via noisy decision rules, produce se-
quences of choices in which two distinct time constants are
apparent: one short time constant due to fast switching for
exploration, and one long time constant due to slow switching
for maximizing reward (e.g., Figure S1). We found that same
structure in the monkeys’ choices (Figure 1B). Fitting mixtures
of one to four components, we found that inter-switch intervals
were parsimoniously described as a mixture of two discrete
exponential distributions, one slow component with an expected
run length of 17.24 trials, and one fast component with an ex-
pected run length of 1.64 trials (Figure 1B). The two-exponential
distribution (log likelihood, !5,603) was a substantially better
fit than a single-exponential distribution (log likelihood, !5,963;
likelihood ratio test, df = 2, p < 10!32), adding additional distribu-
tions to themixture produced aminimal improvement inmodel fit
(Figures S1D and S1E), and an identical pattern was observed in
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both monkeys individually. In the monkeys, the fast time con-
stant was close to 1.5 trials, the value we would expect from in-
dependent random choices between three options. Although the
monkeys’ time constants did not match those from the RL
models (monkeys were more persistent and exploitative; Fig-
ure S1), we could still exploit this shared temporal structure to
identify exploratory choices.
Because the order of inter-switch intervals was non-random

(STAR Methods, p[shortt j longt-1] = 77%, greater than all of
1,000 permutations, p[shortt j shortt-1] = 68%, less than all of
1,000 permutations), we used a hidden Markov model (HMM)
to label choices as coming from fast-switching or slow-switching
regimes. HMMs allow inference about latent, generative states
from temporal structure in observed behavior (Murphy, 2012).
This HMM (Figure 1C; STAR Methods) had two classes of latent
states: an ‘‘exploitation’’ state that produced repeated choices
to the same option (slow switching), and an ‘‘exploration’’ state
which produced shorter samples of different options (fast
switching) (Quilodran et al., 2008). This model was a better fit
to the behavior than models containing either more or fewer
states (STAR Methods). The emissions structure of the explore
state implied random selection between the three options during
exploration, an assumption based on the short switching time
constant (near 1.5; Figure 1A). However, this model also outper-
formed a model that assumed selection was biased away from
previously exploited options during exploration (STAR Methods;
lower AIC value 20/28 sessions; lower BIC in 26/28 sessions),

A

B C

Figure 1. Task Design and Goal State
Identification
(A) The task (top) was to choose between three

probabilistically rewarded targets, one of which

was placed in the receptive field of an FEF neuron

(dotted circle). (Bottom) Reward probabilities

(lines) and choices (dots) for 200 example trials.

Gray bars highlight explore-labeled choices.

(B) The distribution of times between switch de-

cisions (inter-switch intervals). A single probability

of switching or continuous range of switch prob-

abilities would produce exponentially distributed

inter-switch intervals. Dotted black line, the

maximum likelihood fit for a single discrete expo-

nential distribution. Solid blue line, amixture of two

exponential distributions, with each component

distribution in dotted blue. The two components

reflect one fast-switching time constant (average

interval, 1.6 trials) and one persistent time con-

stant (17.2 trials). (Inset) The log likelihood of

mixtures of one to four exponential distributions.

See also Figure S1.

(C) A hidden Markov model, based on the different

time constants for switching, was used to infer the

goal state on each trial from the sequence of

choices. The model included one persistent state

for each target (‘‘exploit’’) and one state where the

subjects were equally likely to choose any of the

three targets (‘‘explore’’).

and the mutual information (MI) between
the previously exploited option and
choices made during exploration was

quite low (0.04 ± 0.04 SD), significantly lower than we would
expect from biased selection (p < 10!22, paired t test,
t[27] = !36.11; STAR Methods). Ultimately, the most probable
generative state was calculated from this model for each choice
and used to label each choice as an ‘‘explore’’ or ‘‘exploit’’
choice (STAR Methods).
Explore choice labels were correlated with whether a decision

was a switch decision, but explore choices were not synony-
mous with switch decisions (mean Spearman’s rho = 0.6,
range = 0.43–0.7 across 28 sessions). Latent explore and exploit
states differed in terms of their rate of switching, but individual
explore choices could be either switch or stay choices, and the
samewas true for exploit choices. In all, 32%of switch decisions
were also exploit decisions. For example, a switch to a previ-
ously exploited option was often an exploit choice (a switch to
exploit). Additionally, 35% of explore-state decisions were stay
decisions. For example, the monkeys could choose the same
target twice while in an explore state (a stay to explore). Explore
or exploit state labels better explained neural activity than did
switch or stay decisions (Figure S5).
To evaluate the validity of the HMM approach, we asked

whether the latent states inferred by the HMM matched the
normative definition of exploitation and exploration in other
ways. By definition, explore choices are non-reward-maximizing
decisions (Daw et al., 2006; Wilson et al., 2014) that reduce un-
certainty about which option is the best (Daw et al., 2006; Cohen
et al., 2007). HMM-labeled explore choices were consistent with
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this definition, despite the fact that no reward information was
used to infer the states. First, in contrast to exploit-labeled
choices, explore-labeled choices were nearly orthogonal to op-
tion value. Decision states that are orthogonal to rewardmaximi-
zation should produce equal numbers of choices to high- and
low-value targets: the distribution of choices should match the
distribution of reward in the environment. Indeed, the average
subjective value of target chosen during exploration was not
different from chance (p = 0.58, t[1,27] = 0.58). The objective
values of chosen targets during exploration were also very
close to, if slightly below, chance (Figure 2B). This suggests
that explore choices were driven by a goal other than reward
maximization.

Second, typical markers of reward-seeking, exploitative
behavior (e.g., high-velocity movements and short reaction
times; Takikawa et al., 2002; Kawagoe et al., 2004; Reppert
et al., 2015) were reduced during exploration, compared to
exploitation (Figure 2C; peak velocity: mean decrease =
9.2"/s ± 11.2"/s SD, p < 0.001, paired t test, t[1,27] = 4.77; reac-
tion time: mean increase = 11.9 ms ± 13.5 ms SD, p < 0.0002,
t[27] = !4.37; n = 28 sessions). Third, explore choices occurred
more often when the rate of reward of the preferred option
decreased, reducing certainty about which option was best (Fig-
ure 2A; significant decrease in Wiener kernel weight for reward
outcomes on trials preceding exploration, kernels fit to each of
28 of sessions, one trial before exploration: !0.024 ± 0.016
SD, p < 0.0001, t[27] = !7.86; two trials: !0.018 ± 0.011 SD,
p < 0.0001, t[27] = !8.91; STAR Methods).

Finally, reward learning was increased during explore choices.
The outcomes of explore choices influenced subsequent deci-
sions more, both on the next trial (Figure 2D; two-way ANOVA,
significant interaction between state and outcome: F[1,111] =
59.02, p < 0.0001; also sig main effects of last reward
F[1,111] = 98.55, df = 1, p < 0.0001 and state F[1,111] = 9.38,
df = 1, p < 0.003) and several trials into the future (Figure 2E;

one trial back, reward effect = 0.11 ± 0.12 SD, paired t test, 28
sessions, p < 0.0002, t[27] = 4.61; 2 trials, 0.12 ± 0.24 SD,
p < 0.03, t[27] = 2.41; three trials, 0.11 ± 0.18 SD, p < 0.02,
t[27] = 2.56). Learning rates remained increased for several trials
(<10) after exploration (Figure 2E; significant interaction between
state and outcomes up to ten trials in the past, p < 0.004,
F[18,839] = 2.16; also sig. main effect of past trial number:
p < 0.0001, F[9,839] = 9.75, and state: p < 0.0001, F[2, 839] =
27.52). Moreover, conditioning learning rates on exploratory
states in several delta-rule RL models substantially improved
the model fit to behavior and confirmed that learning rates are
increased during and shortly after exploration in both monkeys
(Tables S1 and S2; STAR Methods). Thus, the HMM labeled as
‘‘exploratory’’ choices that were not reward maximizing and
occurring during periods of uncertainty and enhanced learning,
matching the normative definition of exploration.
FEF neuronal activity differed across explore- and exploit-

labeled choices. During exploit choices, single-neuron activity
(Figures 3A and 3D; n = 131), multi-unit activity (Figure 3B;
n = 443), and the pooled population activity (Figure 3C;
n = 574) each exhibited strong selectivity for target choices in
the neuronal RF, as expected from many previous studies (Bizzi,
1968; Bruce and Goldberg, 1985; Schall and Hanes, 1993;
Umeno and Goldberg, 1997; Schall and Thompson, 1999; Coe
et al., 2002). During exploit choices, spatially selective, choice-
predictive activity was present well before (>200 ms) target
onset, and it lasted throughout the choice epoch. In contrast,
selectivity was absent until just before (#70 ms) explore choices
(Figure 3D). This was not due to a change in neuronal tuning or
the neural code. Comparing the accuracy of classifiers trained
and cross-tested on held-out subsets of explore and exploit tri-
als revealed that there was less information about choice in neu-
rons during explore choices (trained on exploit, tested on exploit:
66.6%, ±13.0% SD; trained on explore, tested on explore:
56.4% accuracy, ±10.4% SD; average of decrease in accuracy

A B C

D E

Figure 2. Features of Explore- and Exploit-
Labeled Choices
(A) The reward history filter preceding transitions

into explore states (Wiener kernel analysis).

(B) Choice as a function of true reward probability

for explore and exploit choices. x axis: Differ-

ence between each target and the mean of the

alternatives.

(C) Difference in reaction time and peak velocity

between explore and exploit choices.

(D) The probability that the monkeys would switch

targets on the next trial, given this trials’ outcome

and goal state. (Inset) Exploit choices enlarged to

show error bars.

(E) The effect of past reward outcomes on switch

decisions as a function of time since the outcome

(x axis) and state at the time of the outcome

(colors). *p < 0.05, paired t test, n = 28 sessions.

Data are normalized for illustration only; statistics

were run on non-normalized data.
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of 10% within-session, p < 0.003, signtest sign = 19), even
considering a whole-trial epoch that included motor activity.
The reduced selectivity during explore choices was due both
to a decrease in single- and multi-unit activity for RF choices
(Figure 3D, inset; mean decrease = !0.015 units of normalized
firing rate ± 0.083 SD, paired t test, p < 0.0001, t[496] = !5.48)
and to an increase in activity for non-RF choices (mean in-
crease = 0.028, ± 0.054 SD, p < 0.0001, t[542] = 10.26) in both
monkeys (monkey B: in RF, p < 0.0001, t[178] = !4.70, out of

RF, p < 0.003, t[182] = 3.01; monkey O: in RF, p < 0.002,
t[317] = !3.19, out of RF, p < 0.0001, t[354] = 11.16).
The difference in target selectivity between explore and exploit

choices was not better explained by a range of alternative hy-
potheses (Figure S5; Table S3). For example, consistent with
previous studies (e.g., Coe et al., 2002), we observed greater
target selectivity when monkeys repeated the same choice
(stay) compared to when they switched (paired, within-unit,
t test: p < 0.0001, t[1,538] = 12.6). However, target selectivity

A

C

B

D

Figure 3. Target Selectivity during Exploration in Single Units
(A) A single neuron frommonkey O. The cartoon illustrates the relative positions of the RF target (Tin, red) and the two non-RF targets (Tout, blue). Target selective

firing rate measured during exploit choices (solid lines) and explore choices (dotted lines).

(B) Same as (A), but for a multi-unit recorded in monkey B.

(C) Target selectivity across the population of recorded units (n = 574) during exploit choices (top), and explore choices (bottom). Red, Tin; blue, ipsilateral Tout;

green, contralateral Tout.

(D) The target selectivity index averaged over all single neurons (monkey O, n = 83; monkey B, n = 48), plotted across time. (Inset) Firing rate was suppressed for

Tin choice and increased for Tout choice. (Bottom) Difference in the target selectivity index between explore and exploit, averaged over single neurons. Thick lines

in both top and bottom indicate significant difference from 0 in that epoch, p < 0.05, n = 131; shading, ±SEM. See also Table S3 and Figure S5.
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E G

Figure 4. Dynamics of Population Target Selectivity
(A) Targeted dimensionality reduction. Choice-separating hyperplanes (black arrows, linear combinations of neuronal firing rates) were identified with multinomial

logistic regression. Single-trial neural activity was projected into the subspace defined by these hyperplanes (gray plane). (Middle panel) The distribution of

(legend continued on next page)
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was lower during exploration, controlling for whether any individ-
ual choice was switch or stay. Target selectivity was reduced
during explore-labeled switch trials, compared to exploit-labeled
switches (p < 0.0001, t[1,518] = !5.1) and target selectivity was
reduced during explore-labeled stay trials, compared to exploit
(p < 0.0001, t[1, 359] = !6.0). As another example, consider
the outcome of the last trial (Figure S5). There was a small but
significant decrease target selectivity after non-rewarded trials
(p < 0.0001, t[1,560] = 5.6), and exploration was more common
after omitted reward (Figure 2A). However, significant state dif-
ferences were observed regardless of whether the monkey
was rewarded on the last trial (p < 0.0001, t[1,518] =!5.1, paired
within-unit t test) or not rewarded (p < 0.0001, t[1, 359] = !6.0).
Similar observationsweremade for differences in reward history,
the subjective value of the chosen option, the relative value of the
chosen option, response time, and saccadic peak velocity (Fig-
ure S5; Table S3): explore-state choices had lower target selec-
tivity, even compared to exploit state choices matched for these
confounding variables.
Although selective, choice-predictive activity was substan-

tially reduced in single neurons, it remained possible that the
population of FEF neurons maintained choice-predictive infor-
mation, perhaps via small differences in firing rate distributed
across neurons. However, we also observed a substantial reduc-
tion in choice-decoding accuracy from populations of simul-
taneously recorded neurons (Figures S4A and S4B; STAR
Methods; logistic classifier, mean accuracy during the 400 ms
epoch before the saccade: exploit choices = 73.5%, explore
choices = 48.9%, chance [accuracy with shuffled labels] =
44.0%, mean reduction in accuracy within session = 24.5%,
95% CI = 17.8% to 31.3%, p < 0.0001, t[27] = 7.43, 28 sessions
with populations of 14–22 neurons; mean reduction in the prob-
ability of the chosen option: 0.18 lower for explore choices, 95%
CI = 0.14 to 0.23, p < 0.0001, t[27] = 7.95). To understand how
population-choice representations changed across states, we
used targeted dimensionality reduction (Cohen and Maunsell,
2010; Mante et al., 2013; Cunningham and Yu, 2014). Dimen-
sionality reduction re-represents, in a small number of dimen-
sions, important features of the high-dimensional activity of
populations of simultaneously recorded neurons. Unlike princi-
ple component analysis, targeted dimensionality reduction
selects a low dimensional representation wherein the axes
have specific interpretations in terms of the information that is

encoded in the population activity. We used multinomial logistic
regression to identify a projection where population activity
predicted the log odds of choice (Figures 4A, S5C, and S5D;
STAR Methods). During exploitation, we found that population
trajectories fanned out quickly along choice-predictive vectors,
becoming increasingly predictive of choice over time (Figures
4B, S5C, and S5D). In contrast, trajectories were disorganized
during exploration and separated more slowly.
We reasoned that changes in decoding and choice-predictive

dynamics could be due to changes in the distribution of selec-
tive, choice-predictive population activity across trials. There
were clear clusters of same-choice trials in the choice-predictive
subspace (Figure 4A), so we next asked whether this clustering
differed across exploration and exploitation. Clustering was
quantified via a ‘‘scatter index,’’ which measured choice-predic-
tive population activity on each trial deviated from other trials
where the monkey made the same physical choice (STAR
Methods). A scatter index of 1 indicates that neural activity
was no more similar to same-choice trials as it was to different
choices trials. Conversely, a scatter index less than 1 indicates
that the pattern of activity wasmore similar in same-choice trials.
In every single session, we observed greater scatter during
exploration (Figure 4C). Thus, choice-predictive population ac-
tivity was substantially more disorganized and variable during
exploration.
This did not appear to be due to the influence of previous

choices on current-trial choice representations, for two reasons.
First, as already noted (Figure 4), choice-predictive activity on
explore trialswas further away fromother trialswhere themonkey
made the samephysical choice (average distance to other same-
choice trials; paired t test, exploit-explore, p < 0.0001, t[1,27] =
!6.05). But it was also further away from trials that matched
the last choice the monkey made (p < 0.0001, t[1,27] = !7.61)
and—critically—closer to trials where the monkey chose an op-
tion that was neither the same as the present choice nor the
same as the last choice (the ‘‘third option,’’ p < 0.0001, t[1,27] =
5.15). Second, we explicitly tested the hypothesis that scatter
during explore choices was comparable to a mixture of previ-
ous-choice and last-choice information via creating mixing
pseudo-trials (STAR Methods). Scatter was substantially higher
during explore choices than it would be for mixtures of previ-
ous-choice and current-choice information (explore: mean =
0.82 ± 0.05 STE; exploit pseudo-trials: mean = 0.50 ± 0.02 STE;

whole-trial positions in the subspace from one example session. Each marker indicates the position of one trial, colored according to whether target 1 (green),

2 (blue), or 3 (red) was chosen. d indicates the Euclidean distance between two trials in this subspace. (Left) The scatter index (top) is ameasure of clustering in the

choice-predictive subspace. The two highlighted trials are example trials in which target 1 was chosen that have high scatter index (left) and low scatter index

(right), respectively.

(B) Example neural trajectories in the choice-predictive subspace. (Top) Because logistic regression was used to calculate the separating hyperplanes, the

vectors perpendicular to the axes (colored arrows) reflect increasing confidence that the monkey will make that decision. (Bottom left) Average neural trajectories

during exploit trials from the example session. Saturated color indicates average across all exploit choices. Desaturated color indicates four random samples

matched to number of explore choices. (Bottom right) Trajectories during explore choices.

(C) Average scatter index for explore and exploit choices in each session. All sessions are above the unity line. Dark gray, individually significant sessions.

(D) Evolution of the scatter index during the example session, during explore (purple) and exploit (black) choices.

(E) Same as in (D), averaged across sessions.

(F) The difference in within-choice trajectory distance between explore choices and exploit choices, averaged across sessions. Thick lines indicate significant

difference from 0 (corrected p < 0.05, rank sum).

(G) Between-choice divergence in neural trajectories. Exponential model fits overlaid. Shading indicates ±SEM, n = 28 sessions throughout. See also Table S3

and Figures S4 and S5.
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paired t test, p < 0.0001, t[1,27] = 6.42). Thus, the disorganization
of choice-predictive activity during exploration was unlikely to be
due to some conflict from previous-choice information held over
during exploration.

Moreover, like target selectivity, the difference in population
scatter across states was not better explained by a range of
alternative explanations. For example, although scatter was
lower during stay decisions compared to switches (paired,
within-session, t test: p < 0.0001, t[1,27] = !10.4), there was
additional modulation by explore or exploit states. Scatter was
increased during explore-labeled switch choices, compared to
exploit-labeled switches (p < 0.001, t[1,27] = 3.9) and during
explore-labeled stay choices, compared to exploit-labeled stays
(p < 0.0001, t[1,27] = 5.4). Significant state differences in scatter
were also observed regardless of whether the monkey was re-
warded on the last trial (p < 0.0001, t[1,27] = 5.2, paired within-
session t test) or not rewarded (p < 0.0001, t[1,27] = 8.3). Finally,
changes in network scatter across decision states were again
not better explained by reward history, the subjective value of
the chosen option, the relative value of the chosen option,
response time, or saccadic peak velocity (Figure S5; Table S3).

The scatter index decreased leading up to the saccadic choice
during both exploration and exploitation, indicating that same-
choice patterns of population activity became increasingly clus-
tered before the saccade (example session, Figure 4C; all
sessions, Figure 4D; each monkey separately, Figures S4E and
S4F). The scatter index deviated significantly from 1 #225 ms
earlier during exploit trials than during explore trials (time differ-
ence between the first bin in each condition with p < 0.05, t test,
Holm-Bonferroni corrected). However, choice-predictive activity
remained more scattered during exploration throughout the trial,
compared to exploitation. This was due to two differences in
choice-predictive trajectories: during exploitation, within-choice
variability in trajectories was reduced (Figure 4F), and between-
choice distance was increased (Figure 4G; STAR Methods). The
divergence of trajectories leading to different choices was best
by models in which separation accelerated over time (exponen-
tial fits in Figure 4G; model comparison in Tables S4 and S5;
STAR Methods). Collapsing variability and accelerating diver-
gence are consistent with models describing decisional activity
as an attractor dynamic (Wong and Wang, 2006; Mante et al.,
2013; Kopec et al., 2015), though it suggests that dynamical at-
tractor regimes may differ across exploration and exploitation.

In order to determine how transitions between these regimes
might occur, we examined network scatter evolved across tran-
sitions between exploration and exploitation (example session,
Figure 5A; all sessions, Figure 5B). First, scatter was higher dur-
ing explore choices than during the exploit choices both imme-
diately before exploration (p < 0.002, signtest, sign = 24; paired
t test: p < 0.0001, t[27] = 6.1) and immediately after (p < 0.004,
sign test, sign = 22; paired t test: p < 0.0002, t[27] = 4.5), consis-
tent with a good alignment of HMM labels and endogenous
states. Over the ten trials preceding transitions into exploration,
scatter was stable (slope = 0.005, p = 0.3, GLM, ten trial lags
across 28 sessions), and transitions into exploration were
abrupt. However, following exploration, scatter decreased grad-
ually over the next ten trials (slope = !0.022, p < 0.0001). There
was no trend in the scatter index within bouts of exploration

(slope = !0.01, p = 0.16). It was possible that the apparently
gradual recovery of scatter after exploration was just due to
misalignment of the kind of abrupt transitions that have been re-
ported previously (Durstewitz et al., 2010; Karlsson et al., 2012)
and which were observed at the start of exploration (Figures
5A and 5B). However, a comparison of changes in the scatter in-
dex across trials (scatter ‘‘step sizes’’; STAR Methods) revealed
that the variance in step sizes during recovery from exploration
was lower than would be expected from misalignment of abrupt
transitions (paired t test, observed variance ! mean of boot-
strapped variance, p < 0.0005, t[27] = 4.24, mean effect size =
0.047, 17 95% CI = 0.024 to 0.069; individually significant
decrease in variance in 16/28 sessions, >57%, one-sided boot-
strap test). Furthermore, there was no significant increase in the
variance in step sizes post-exploration compared to a period in
which the scatter index was largely stationary (during the ten tri-
als before exploration; paired t test, p > 0.5, t[27] = 0.68, mean
effect size = 0.005), despite the fact that scatter step sizes
were significantly larger and more negative after exploration
(mean pre-explore step size = 0.007, mean post-explore step
size = !0.015, paired t test, p < 0.0001, t[27] = 5.98, mean
pre ! post difference = !0.022, 95% CI = !0.015 to !0.030).
Thus, transitions into exploration were abrupt, but recovery
from exploration was a more continuous and gradual process.
These complex dynamics could suggest a transient increase

in the rate of change or reorganization in FEF activity near explo-
ration. If this were the case, transitions into exploration should
disrupt slow, persistent fluctuations in activity across trials. We
tested this hypothesis via examining residual spike-count auto-
correlation functions (Bair et al., 2001; STARMethods). Neuronal
spike counts were correlated with themselves on nearby trials
(Figure 5E). However, when nearby trials were separated by
exploration, spike count autocorrelations were reduced. This
was true even for within same-choice trials separated by explo-
ration and was not due to differences in sample size (STAR
Methods). Instead, exploration disrupted slow fluctuations in
spike counts that were otherwise observed on the order of
1–10 trials. There were pronounced peaks in the autocorrelation
function for explore-separated trials that were not apparent for
non-separated trials, suggesting an oscillation (0.05–0.07 Hz)
that may be more pronounced near exploration or which may
be revealed by the disruption in slow fluctuations associated
with exploration. Thus, exploration disrupted slow, persistent
fluctuations in network activity, consistent with a rapid reorgani-
zation of network dynamics in the vicinity of exploration.
To determine what forces might shape this reorganization, we

asked what drove the gradual recovery of choice-predictive
organization after exploration. The gradual recovery of the scat-
ter index was not autonomous, occurring inevitably due to the
passage of time since exploration (Figure 5D). Instead, it was
driven by reward. The number of rewards accumulated since
the end of exploration was a better predictor of the decrease in
the scatter index (accumulated reward model: AIC = 22,538,
BIC = 22,734; trials since model: relative AIC weight = 0.002,
AIC = 22,550, relative BIC weight = 0.002, BIC = 22,746).
Moreover, reward had more influence on the scatter index
during these periods (Figure 5E). In general, reward decreased
the scatter index on the next trial (explore trials: mean
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decrease = !0.04 ± 0.08 SD, p < 0.02, t[27] = 2.6; exploit trials:
!0.02 ± 0.03 SD, p < 0.006, t[27] = 3.0, n = 28 sessions). How-
ever, reward only affected scatter within the first ten exploit
choices following exploration (Figure 5D; five or fewer trials:
p < 0.0005, t[27] = 3.9; between five and ten trials: p < 0.02,
t[27] = 2.42; 10+ trials: p = 0.6, t[27] = 0.5). Thus, reward had a
greater impact both on behavior (Figure 2E) and on choice-pre-
dictive population dynamics (Figure 5E) during and shortly after
exploration.

DISCUSSION

The results show that exploration substantially reduces classic
patterns of spatially selective, choice-predictive activity in FEF
neurons. Despite identical task demands, visual stimuli, and
eye movements, there was less information about oculomotor
choice in the FEF during exploration, at both the single-neuron
and the population level. Exploration also disrupted choice-pre-
dictive population dynamics occurring on multiple timescales.
During explore periods, FEF neurons conveyed little information
about the location of future choices; choice-predictive neural tra-
jectories were delayed and disorganized, and autocorrelations

between trials were disrupted. Futurework is necessary to deter-
mine how population dynamics evolve on single trials, but
together, these results suggest that exploration is associated
with a sudden disruption of persistent, spatially selective dy-
namics in prefrontal cortex that would otherwise be maintained
over multiple trials. Indeterminate, random selection rules are
efficient and sufficient strategies for exploration (Sutton and
Barto, 1998; Wilson et al., 2014), and these results suggest
that the primate prefrontal cortex implements exploration via a
similar strategy.
The present study developed a novel method for identifying in-

dividual choices as explore or exploit choices. This method is
based on the fact that, by definition, explore and exploit choices
occur on different temporal scales: exploitation is the repeated
sampling of a known-good option, while exploration samples
briefly from a range of alternative options. Here, we observed
that there were also two distinct time constants in the monkeys’
decisions in a classic explore or exploit task, mirroring
the pattern of time constants observed in exploratory RL
agents. Furthermore, in monkeys, choices labeled according
to these time constants were consistent with normative
definition of exploration and exploitation: explore choices were

A C

B

D E

Figure 5. Target Selectivity across Trials Relative to Explore Transitions
(A) Average scatter index on trials before, during, and after exploration from an example session. Lines indicate GLM fits to the scatter index before and after

exploration. Bars indicate ±SEM throughout, *p < 0.05, n = 28 sessions.

(B) Same as in (A), across sessions.

(C) Residual spike count autocorrelation for exploit trials that were (light gray) or were not (dark gray) separated by exploration. Lags at <2 were not possible for

explore-separated trials. Lines represent polynomial fit (order = number of lags O 2), shading ±SEM of the fit. Solid lines along the bottom are significant bins,

bootstrapped, p < 0.05, corrected, n = 514 units.

(D) Scatter index during the first five exploit trials following an explore, combined across sessions as a function of both trials since exploration, and the reward

accumulated since exploration. Trial counts in each bin are overlaid.

(E) The difference in the scatter index between trials where reward was received on the last trial and when it was not, separated according to time since

exploration, n = 28 sessions.
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non-reward-maximizing choices that reduced uncertainty. By
design, this approach made few assumptions about the compu-
tations that produce exploration, which makes the approach
robust to the field’s current uncertainty about these underlying
computations. However, future work is necessary to elucidate
these computations and develop truly mechanistic models of
exploration.

Our observation that explore-exploit state transitions coincide
with changes in the fidelity of spatial representations within the
FEF raises the important question of their underlying mecha-
nism. A number of studies have surveyed the presence and
magnitude of value-based decision signals within primate pre-
frontal cortex, including both medial and lateral prefrontal areas.
Overall, these studies have shown that although value signals are
clearly present within the FEF (Leon and Shadlen, 1999; Roesch
and Olson, 2003, 2007; Ding and Hikosaka, 2006; Glaser et al.,
2016), they are less prevalent than in other prefrontal regions
(Leon and Shadlen, 1999; Roesch and Olson, 2003, 2007), and
choice signals emerge later in the FEF compared to the supple-
mentary eye field (SEF) (Coe et al., 2002). Perhaps, like value
signals, the decision of when and what to explore is also propa-
gated to the FEF from higher-order prefrontal regions. There is
compelling evidence that the SEF signals transitions into explo-
ration (Kawaguchi et al., 2015) and tracks decision confidence
(Middlebrooks and Sommer, 2012), previous outcomes (Dona-
hue et al., 2013), and reward prediction errors (So and Stuphorn,
2012): it contains the appropriate signals to mediate transitions
into exploration. Another candidate region is the anterior cingu-
late cortex (ACC), which projects directly to the FEF (Barbas and
Mesulam, 1981) and is implicated in regulating the stability of
reward-maximizing goals (Kennerley et al., 2006; Ebitz and Platt,
2015; Ebitz and Hayden, 2016). Future work will be necessary to
establish a clear causal role for such prefrontal areas in explore-
to exploit-state transitions.

What is the significance of these effects on spatial represen-
tations within the FEF for attention? Attention, be it overt or
covert, is a fundamental competency for decision-making and
shapes reward learning (Pearce and Hall, 1980; Swan and
Pearce, 1988; Pearce and Bouton, 2001; Niv et al., 2015) and
choice (Krajbich et al., 2010). The FEF is a critical source of
selective modulations of peripheral sensorimotor circuitry (Ebitz
and Moore, 2017). It plays a direct role both in saccadic target
selection (Bizzi, 1968; Bruce and Goldberg, 1985; Schall and
Hanes, 1993; Umeno and Goldberg, 1997; Schall and Thomp-
son, 1999; Coe et al., 2002) and in the deployment of visual
spatial attention (Kastner et al., 1998; Moore and Fallah,
2001, 2004; Moore and Armstrong, 2003; Thompson et al.,
2005; Armstrong et al., 2009). Both functions appear enabled
by the precise spatial tuning of FEF neurons (Bruce and Gold-
berg, 1985; Armstrong et al., 2009), which exceeds that of the
SEF (Purcell et al., 2012; Chen and Stuphorn, 2015), dlPFC
(Funahashi et al., 1990), or ACC (Hayden and Platt, 2010). In
addition, the FEF has direct projections to both dorsal and
ventral stream areas of extrastriate visual cortex (Stanton
et al., 1995) and to downstream oculomotor structures (Stanton
et al., 1988), projections that appear uniquely potent in regu-
lating these circuits (Schlag-Rey et al., 1992; Ekstrom et al.,
2008). These facts suggest that the FEF may serve as an inter-

face between the prefrontal regions, where decision-related
signals might originate, and downstream visual and oculomotor
structures, where they shape spatial attention and visually
guided saccades. FEF’s unique role in these circuits suggests
that the profound changes in FEF selectivity we report here
may have consequences for sensorimotor control— altering
attentional priorities and the perceptual correlates of atten-
tion—though future studies will be needed to test this hypoth-
esis empirically.
During exploration, reward-dependent learning was increased

in behavior, and reward had a larger impact on trial-to-trial
reconfiguration of spatially selective, choice-predictive neural
activity patterns. This provides empirical support for normative
predictions that learning should be enhanced during exploration
(Kaelbling et al., 1996; Sutton and Barto, 1998; Yu and Dayan,
2005; Daw et al., 2006; Cohen et al., 2007; O’Reilly, 2013) and
are consistent with previous reports of variable learning rates
in volatile environments (Behrens et al., 2007; Quilodran et al.,
2008; Rushworth and Behrens, 2008; Nassar et al., 2012; O’Re-
illy, 2013; McGuire et al., 2014). Critically, increased learning
rates during exploration also suggest that the monkeys were
not simply disengaged from the task during explore choices:
despite the profound disruption in prefrontal choice-predictive
signals, they learned more about the outcomes of their choices.
However, this juxtaposition of results raises the critical question
of what cognitive and neural mechanisms might support
changes in learning rates. Enhanced selective attention seemed
an attractive mechanism—it predicts increased learning via
enhancing stimulus associability (Pearce and Hall, 1980; Swan
and Pearce, 1988; Pearce and Bouton, 2001; Niv et al.,
2015)—but here, learning was paradoxically associated with
disorganized activity in a structure implicated in the control of
attention (Kastner et al., 1998; Moore and Fallah, 2001, 2004;
Moore and Armstrong, 2003; Thompson et al., 2005; Armstrong
et al., 2009). Perhaps changes in learning rate are simply
another facet of the same indeterminate brain state that
permits exploratory choice: a state in which the network is
rapidly reconfiguring and more susceptible to the influence of
reward. Future work is necessary to determine how frequently
indeterminate brain states co-occur with increases in reward-
dependent plasticity, but if these are indeed different features
of a single, unified, exploratory brain state, it is a state that could
both allow the brain to discover unknown opportunities and to
rapidly reconfigure to pursue the opportunities that result in
reward.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Becket Ebitz (rebitz@
gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care and experimental procedures were approved by the Stanford University Institutional Animal Care andUseCommittee.
Twomale rhesusmacaques (between 5 and 10 years, between 6 and 14 kg) participated in the experiment over the course of 2 years.
Monkeys were singly housed in a small (8-10) colony room. In order to allow for neurophysiological recordings, monkeys were sur-
gically preparedwith head restraint prostheses, craniotomies, and recording chambers under isoflurane anesthesia. Analgesics were
used to minimize discomfort. After recovery, monkeys were acclimated to the laboratory and head restraint, then placed on
controlled access to fluids and trained to perform the task. One animal was naive at the start of the experiment, the second had
previously participated in oculomotor and visual attention studies.

METHOD DETAILS

Electrophysiological techniques
Recordings were largely, if not exclusively, made within the FEF. Within 5 days of each recording, we confirmed recording site loca-
tions via electrical microstimulation. We lowered low-impedance (< 50 kU) tungsten electrodes into the vicinity of the arcuate sulcus.
Microstimulation trains were cathode-leading square wave trains, with pulses delivered at a rate of 333 Hz through a pulse stimulator
and two stimulus isolators (Grass). Sites were identified as FEF if saccades were evoked in less than 50mswith currents 50 mA or less
(Bruce et al., 1985). The results of the microstimulation (saccadic thresholds, latencies) are described elsewhere (Ebitz and Moore,
2017). Recordings were conducted with 16-channel U-probes (Plexon) placed so that each contact was within the gray matter at a
site with saccadic microstimulation thresholds consistent with the FEF. In one monkey, we histologically confirmed the placement of
recording electrodes into the anterior bank of the arcuate sulcus (Figure S3), bothmonkeys had similar current thresholds for evoking
saccades (Figure S3), and similar results were obtained in each (Figure S4).

General behavioral techniques
MATLAB was used to display stimuli and collect eye data, which was sampled at 1000 Hz via an infrared eye tracking system
(SR Research). Task stimuli were presented against a dark gray background on a 47.5 cm wide LCD monitor (Samsung; 120 Hz
refresh rate, 1680 3 1050 resolution), located 34 cm in front of the monkey.

Three-armed bandit task
This was a sequential decision-making task in which the monkeys choose between 3 alternative targets whose values (probability of
reward) walked over trials. The monkey first fixated a central fixation square (0.5" stimulus, +/! 1.5-2" of error) for a variable interval
(450-750ms). At any point within 2 s after the onset of the targets, the monkey indicated his choice bymaking a saccade to one of the
targets and fixating it (3" stimulus, +/! 3") for a specified period (150 ms). Target eccentricity varied between sessions, between 8"

and 12". The probability of receiving a fluid reward following selection of either target was determined by the current reward prob-
ability of the chosen target andwas fixed inmagnitude within session (0.2-0.4 mL). Reward probabilities changed independently over
trials for each of the three targets: on each correct trial, each target had a 10% chance of the reward parameter changing either up or
down by a fixed step of 0.1, bounded at 0.1 and 0.9. Because reward were variable, independent, and probabilistic, monkeys could
only infer values through sampling the targets and integrating their experienced reward history over multiple trials.

QUANTIFICATION AND STATISTICAL ANALYSIS

General analysis techniques
Data was analyzed with custom MATLAB scripts. Paired, two-sided across-session t test were used, unless otherwise specified. If
multiple comparisons were made, p values were adjusted with a Holm-Bonferroni correction and compared against the standard
a = 0.05 threshold. When an index was calculated (such as for within-cell target selectivity), a minimum of two observations were
required for each term in the index or the cell was excluded. As a result, these index-based analyses have variable numbers of
observations and degrees of freedom, as noted in the text. For targeted dimensionality analyses, < 8% of cells (n = 45 of 574)
were omitted from the population for each session because their mean whole-trial firing rate across all trials was < 2 spikes/s, which
lead to unstable beta weights inter-switch for these cells (after (Mante et al., 2013)). No data points were excluded for other reasons
and observation counts are reported in figure legends and/or Results. Additional details of statistical analyses reported in following
sections and effect sizes and statistical tests are in the Results or the supplemental tables.
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Behavioral data analysis
Rationale for state labeling approach. In previous studies using restless multi-armed bandit tasks, explore and exploit choices have
been labeled according to whether or not they are consistent with subjective values inferred from fitting a delta-rule reinforcement-
learning (RL) model (Daw et al., 2006; Pearson et al., 2009; Jepma and Nieuwenhuis, 2011). This approach begins by defining
‘‘explore choices’’ as ‘‘non-reward-maximizing.’’ Then, choices that are consistent with inferred values are labeled as exploit, while
choices inconsistent with values are labeled as explore. This approach formally equates exploration with errors of reward-maximi-
zation: these are explicitly the choices in which the most valuable option was not chosen. However, exploratory choices are choices
in which a different goal—other than reward-maximization—is driving choice. In this view, explore choices should be orthogonal to
reward value, not perfectly anti-correlated with it. The previous approach is also sensitive to misspecifications of the RLmodel: slight
differences in the RLmodel used to generate values can have large consequences for what choiceswould be labeled exploratory. Yet
the relationship between RLmodels and biological actors’ decision processes is an area of open and active inquiry. Subjective value
calculations can differ between species and tasks and there are many schemes for adding exploration to an artificial agent, though it
remains unclear which, if any, best match the computations performed by real agents. Therefore, here we develop a new method to
identify choices as exploratory or exploitative that did not require we choose a specific model of value-based decision-making or
make any assumptions about the computations used to determine when and what to explore.

This method is based on the observation that exploration and exploitation take place on different timescales. For example, in RL
agents, exploration is typically implemented via adding noise or indeterminacy to a decision-rule. Thus, the choices that are caused
by this noise—the exploratory choices—are shorter duration samples than the choices that depend on option value, which change
more slowly over time. Similar observations about the temporal dynamics of exploration and exploitation have been made in biolog-
ical agents (Pearson et al., 2009). To be concrete, in an RL agent with ε-greedy decision rule, exploratory choices would be very brief
choice runs whose duration would be determined by both the (typically small) value of ε and the number of choice options.
Conversely, when a good option is found, the agent will make long runs of choices to that particular option—exploiting it. For an
ε-greedy agent, the duration of choice runs during exploration would depend on the volatility of target values and the compliment
of ε, and the complete distribution of choice run lengths would have both a long and short component (Figure S1A). Moreover, simu-
lation shows a mixture of short duration choice runs and long duration choice runs with more complex exploratory schemes, such as
softmax exploration (Figure S1B) or upper confidence bound sampling. Thus, the distinct time constants of exploration and exploi-
tation provide a starting point for labeling choices that is robust to the particular computations the agent uses to decide when and
what to explore.

Exponential mixture model. In order to determine whether the monkeys also had two timescales of decision-making, we analyzed
the temporal structure of the monkeys’ choice sequences. If a single time constant (probability of switching) governed the behavior,
wewould expect to see exponentially distributed inter-switch intervals. That is, the distribution of inter-switch intervals should bewell
described by the following model:

fðxÞ= 1

b
e
!x
b

Where b is the ‘‘survival parameter’’ of the model: the average inter-switch interval. However, although the time between switch
decisions was largely monotonically decreasing and concave upward, the distribution was not well described by a single exponential
distribution (Figures 1B and S1). The monkeys had more short-latency and more long latency choice runs, indicating that a single
switching probability could not have generated the data. Therefore, we next fit mixtures of varying numbers of exponential distribu-
tions (1-4) tomonkeys (Figures 1C andS1) andRL agents (Figure S1), in order to infer the number of switching regimes in these choice
processes. For continuous-time processes, these mixture distributions would be of the form:

fðxÞ=
Xn

i = 1

pi
1

bi

e
! x
bi

Where 1 R pi R 0 for all pi, and Si pI = 1. Here, each bi reflects the survival parameter (average inter-switch interval) for each
component distribution i and the pi reflects the relative weight of each component. Because trials were discrete, we fit the discrete
analog of this distribution: mixtures of 1-4 discrete exponential (geometric) distributions (Barger, 2006). Mixtures were fit via the
expectation-maximization algorithm and we used standard model comparison techniques (Burnham and Anderson, 2002) to deter-
mine the most probable number of mixing components (Figures 1C and S1; Results).

Randomness ofmixing component sequences. To determinewhether transitions between explore-like and exploit-like inter-switch
intervals were random, we compared real choice sequences to a shuffled sequence of inter-switch intervals. We calculated the max
probable generativemixing distribution (the ‘‘z label’’) from the two-exponential mixturemodel for each inter-switch interval. This was
equivalent to setting a model-based threshold on the inter-switch intervals and labeling all intervals less than this threshold as short
runs and all intervals greater than this threshold as long runs. Then, we askedwhether the length of the inter-switch interval at time t-1
was predictive of the length of the next interval at time t. Significance was assessed via comparing real conditional probabilities with
those calculated via permutation (1000 repetitions of shuffled labels).
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Hidden Markov model (HMM). Because there were two switching regimes in the behavior and transitions between these regimes
were structured, we next turned to an HMM to to determine the most probable decision-making regime for each observed choice.
HMMs are used to model sequential processes in which observations (i.e., choices) are generated by unobserved latent states (i.e.,
goals). They are appropriate whenever the latent state dynamics are reasonably Markovian: determined by a fixed probability that
does not change across time. Markovian processes produce exponentially-distributed state occupancies, consistent with the struc-
ture of the monkeys’ choice behavior here (Figures 1C and S1). To produce long, exponentially-distributed runs of repeated choices
to a single target, the HMMhad one latent exploitative state for each target. To produce short, random run lengths, the HMMhad one
shared explore state from which decisions to any of the choices were equally likely. To move from exploiting one target to exploiting
another, the model enforced a transition through an explore state. However, in an unconstrained model with the same number of
latent states, direct transitions between two exploit states as well as other-choice emissions from an exploit state all had paths
of < 2%, indicating that an unconstrained model will effectively reduce to the final model here. Thus, HMM-labeled exploit choices
occurred during periods in which a single target was repeatedly sampled and explore choices occurred during periods in which any
target was likely to be sampled. Moreover, the HMM produced state labels that were consistent with normative definitions of explo-
ration in other ways (Figure 2). To account for session-by-session variability in choice biases, the HMMwas fit to each session via the
Baum-Welch algorithm (MATLAB: hmmfit). Then, the Viterbi algorithm (MATLAB: hmmviterbi) was used to find maximum a posteriori
sequence of states, the most probable of which was taken as the state-label for each trial (examples illustrated in Figure 1A).
Choice biases during explore states. The structure of the HMM assumed random selection during exploration, but it remained

possible that the monkeys instead only chose between options other than the previously exploited option. We used two methods
to evaluate this possibility.
First, if explore choices were biased away from the last exploited option, then knowing the identity of that option would reduce

uncertainty about what would be chosen during exploration. With random choices, knowing the last exploited option would not
reduce uncertainty. The amount of information about one random variable gained from observing another is the mutual information
(MI) between the variables. We calculated the MI between previous exploit choices (S) and current explore choices (C):

IðS;CÞ=
X

s˛S

X

c˛C
pðs; cÞlog

!
pðs; cÞ
pðsÞpðcÞ

"

Where s is one of the set of previously exploited options, S, and c is one of the set of possible choices, C. Then, we compared the
observed MI to the expected MI given either 1) biased or 2) unbiased (random) selection. Expected MI was calculated via randomly
drawing choices that matched monkeys’ distribution of explore choices within each session. The last exploited option was excluded
to produce a biased sample or included to produce an unbiased one. If the monkeys excluded the last exploited option from explore
choices, MI would be high (0.37 ± 0.04 SD across session simulations). Conversely, MI for unbiased random selection would be very
low (0.02 ± 0.02 SD). MI was lower than wewould expect from biased selection (see Results), though also greater than purely random
selection (p < 0.01, t(27) = 2.88). This could be either due to a small, but real bias in themonkeys’ behavior, or to the fact that the HMM
was more likely to erroneously identify a real explore choice to the last exploited option as an exploit choice.
Second, we tested for biased exploration by determining whether a HMM that explicitly assumed biased selection was a better fit

to the behavior. The biased HMM was similar to the original model (Figure 1C), but included 3 exploratory states. Each exploit state
had its own explore state, in which only targets other than the previous exploit option could be chosen. Transitions between different
explore states were prohibited to ensure biased exploration. The log likelihood of the anti-bias model was slightly higher (original
model = !9599.6, anti-bias model = !9525.7), but the number of parameters was substantially increased in this model (15 param-
eters in the antibias model versus 8 parameters in the original model) and model comparison did not justify this more complicated
model (see Results).
A note on the interpretation and generalization of the state-labelingmethod.Althoughwe observed evidence for two time constants

in the behavior, and the HMM included only discrete states, it remains unclear whether these states are truly discrete. Certainly, the
neural activity suggests a gradual recovery of population dynamics after exploration, an observation that is inconsistent with discrete
states in the FEF. Future work is necessary to develop more sophisticated models of these sequential choice dynamics and to un-
derstandwhat factors determine their parameters. Moreover, while our task design and reward schedule did not enforce two different
time constants for switching, it remains unclear whether two switching time constants would be observed in other tasks that require
exploration. The present experiment used a classic explore/exploit dilemma task—a restless three-armed bandit—but other studies
of exploratory behavior manipulate rewardmagnitude rather than probability (Daw et al., 2006; Pearson et al., 2009; Jepma and Nieu-
wenhuis, 2011), use static bandits (Wilson et al., 2014), or include change-points or volatility manipulations (Behrens et al., 2007; Nas-
sar et al., 2012; McGuire et al., 2014). Perhaps under these circumstances, monkeys would have used a range of switching time
constants or set some fixed threshold for the number of samples from each option. If range of switching time constants was
used, and these were uniformly distributed, inter-switch intervals would be distributed as a single exponential, with an inverse
half-life equal to average probability of switching. If a fixed threshold was used, inter-switch intervals would not be exponentially
distributed at all, but instead peaked at the time of the fixed threshold. Future studies are necessary to determine how different
task demands and reward schedules determine the temporal dynamics of sequential choice behavior.
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Subjective value estimation.Wemodeled subjective value as an exponentially weighted history of the past outcomes the monkeys
observed (Figure S2). Monkeys commonly exhibit exponential reward history kernels over past outcomes (Sugrue et al., 2004; Lau
and Glimcher, 2005; Kennerley et al., 2006): recent outcomes affect choice more than past outcomes and the weight of previous out-
comes decays roughly exponentially. This is exactly equivalent to a dynamic update process, in which new values are calculated as a
weighted average of past value and current outcome. In either case, the effect of an outcome decays exponentially. In the dynamic
view, the parameter of interest is typically represented as a and referred to as the learning rate. In the kernel view, value updates are
typically parameterized using a-1, or the half-life of a reward outcome, denoted t. Despite these links and the apparent simplicity of
the problem, there are a number of different choices to make in formalizing either approach. For example, unchosen option values
may also be updated: they may decay to a uniform prior or toward 0, if the monkeys are locally estimating of the rate of reward for
each option (e.g., (Kennerley et al., 2006)) or reward outcomesmay be transformed into prediction errors before integration. We eval-
uated each of these possibilities quantitatively and ultimately chose the method for calculating subjective value that best explained
the monkey’s choice behavior, as described below.

Here, we used convolution and regression (after (Sugrue et al., 2004)) to calculate the exponentially weighted moving average of
reward history. Reward history was coded as a binary vector (1 if theywere rewarded for selecting that target on that trial, 0 otherwise)
and convolved with an exponential filter of various half lives (22 values of t, range: 0.5 through 25). Each convolution produced a vec-
tor of subjective values under the hypothesis that the filter length themonkey usedmatched the one used in the convolution. Then, we
used multinomial logistic regression to find the best filter by predicting choice from each subjective value vector. The best-fitting t
was identified via finding the filter length that minimized cross-validated (10-fold) model deviance (Figure S2). Ultimately, we chose
the simplest model (shortest half-life) within 1 standard error of the minimum cross-validated deviance.

In our approach, if an option was not chosen at trial t, its outcome was coded as 0. This is equivalent to saying that the value of
unchosen options decayed to 0 and implies that the monkeys were calculating a local rate of return for each option, regardless of
selection (a feature of monkey decision-making that has been reported previously (Lau and Glimcher, 2005; Kennerley et al.,
2006)). In every single session, the best-t model in which unchosen options decayed to 0 outperformed the best-t model in which
unchosen values decayed to a uniform prior (unchosen option outcomes set to 0.5, rather than 0; lower AIC and BIC values in every
session, all AIC and BIC weights < 0.0001) or were carried forward from the previous time step (lower AIC and BIC values in every
session, all AIC and BIC weights < 0.0001).

Of course, our approach also made the strong assumption that monkeys directly incorporated outcomes into values, rather than
first transforming them into reward prediction errors (i.e., performing a delta-rule update). To determine if this was true, we directly
compared choice-predicting accuracy for values calculated either directly or via a delta-rule update. Again, we found the best t (a-1)
for each approach via choosing the best among 22 subjective value vectors. Directly integrating new outcomes produced subjective
values that better explained choice than did delta-rule updates, as indicated by lower AIC and BIC values in the majority of sessions
(25/28). Moreover, the final model (in which unchosen values decayed) remained the single best approach, outperforming both of
these alternative formulations in every session (28/28, all AIC and BIC weights < 0.0001).

Delta-rule reinforcement learning model. Reinforcement learning models were used for HMM development and validation
(Figure S1) and to corroborate learning rate effects (Figure 2E). In each case, standard delta-rule reinforcement learning models
(after (Rescorla and Wagner, 1972)) were fit via maximum likelihood. We assume that the value (v) of a target i, selected at
time t is updated according to:

bvi;t + 1 = bvi;t +adt

Where vi,t is the value of option i at time t, a is a fitted learning rate, and the prediction error (d) is

dt = rt ! bvi;t

To determine whether and how learning rates changed as a function of time since exploration (Tables S1 and S2), we added a
second update term, conditioned on exploratory periods:

bvi;t + 1 = bvi;t +adt +Stgdt

Where St was a logical vector indicating the state of the animal on that trial. S was set to 1 for explore trials (in the explore-only
model) or to 1 for both explore trials and exploit trials within 10 trials following an explore trial (explore+10 model). S was 0 otherwise.
Thus, g described the change in learning rate during these special epochs, relative to the global shared learning rate a.

Models with both softmax and ε-greedy decision rules were evaluated for each analysis. The two decision rules each assume the
monkeys’ goal is reward-maximization, but that reward-maximizing decisions are noisy (exploratory) in different ways. In the
ε-greedy case, the rule assumes that the monkey picks the best target most of the time, but also randomly chooses with some
probability (ε):

pðit = arg maxiðbvi;tÞÞ= ð1! εÞ+ ε
n

pðitsarg maxiðbvi;tÞÞ= ε! ε
n
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Where n is the number of choice options.
In the softmax case, the inverse temperature parameter (b) describes the steepness of a decision rule that probabilistically maps

value comparisons to decisions.

pðitÞ=
ebv i;tb

P
j = 1:n

ebv j;tb

Across all models, the softmax decision rule was a better fit for the data (Tables S1 and S2), but learning rates were similar in both
cases. Model fits using both decision rules are reported in the text and Supplemental Tables.
Models were initialized with 100 random seeds and fit via maximum likelihood (minimizing the negative of the log likelihood; fmin-

search, MATLAB). Target values were initialized at 0.5. Learning rates (a) were constrained between 0 and 1, but state-conditioned
learning rates (g) were allowed to vary between !1 and 1, to allowing for suppressed learning during exploration.
Explore-triggered reward history. In order to determine if transitions into exploration occur in response to specific reward histories,

we askedwhether there was any pattern in the sequence of reward before explore transitions. Onemethod to do this would be to take
the average reward history over some period (filter length) before explore transitions. However, random walks like our reward
schedule are autocorrelated, so we used a Wiener filter approach to extract the explore-triggered reward history impulse, corrected
for these autocorrelations. Wiener filter analysis has previously been used to extract choice-triggered reward-history impulses
(Sugrue et al., 2004) and is similar to methods used to examine spike-triggered average stimuli. Briefly, the symmetrical Toepliz
autocorrelation matrix of reward (Qrr) is inverted and multiplied against the cross-correlation between transitions into explore and
reward (Qtr) to produce the explore-triggered reward history impulse (h):

h=Q!1
rr Qtr

Here, both time series are binary and centered so the cross correlation (Qtr) is simply the explore-triggered average of reward his-
tory, without correction for autocorrelations. Note that overbars indicate vectors, rather than matrices. We used a filter length of 10
trials, but changing the filter length did not change the result: transitions to exploration were driven by omitted reward on the last 2
trials.
Effect of past reward on choice. To determine whether past reward outcomes would have a state-dependent impact on behavior

many trials into the future (increased reward-learning), we calculated the difference in the switch-probability on each trial (t) condi-
tioned on reward outcome on some past trial (ri):

reward effect=pðswitchjrt!i = 1Þ ! pðswitchjrt!i = 0Þ

This quantity was calculated separately within three states (explore choices, exploit choices that occurred within 10 trials following
an explore choice, and late exploit choice). For clarity of presentation, the data in Figures 2D and 2E are normalized to the probability
of switching within each state, but the same pattern was apparent in non-normalized data and statistical tests were run on non-
normalized data. This analysis only included past trials in which the animal made the same choice as the most recent (1-back) trial.

Neuronal data analysis
Unless otherwise specified, firing rates were normalized between 0 and 1 by first subtracting the average minimum firing rate
(baseline) and then dividing by the baseline-subtracted maximum firing rate across trials. Paired (within-neuron or session) nonpara-
metric tests were used with Holm-Bonferroni corrections for multiple comparisons. Whole-trial epochs ranged from !400 ms to
100ms aligned to choice (saccade onset). Sliding analyses were conducted using overlapping 25ms bins (10ms steps) and p values
were corrected for the total number of bins (Holm-Bonferroni). The only exception to this was the separation between different-choice
trajectories, in which case bins were nonoverlapping (25 ms steps) due to the need for independent bins for curve fitting.
Target Selectivity. In order to quantify target selectivity in single neurons over time, we first identified each neuron’s preferred target

(Tin) as the target which elicited the highest whole-trial firing rate when chosen. For each cell, a target selectivity index was then
calculated as the difference between mean firing rate for preferred-target choices and the mean of firing rates for the alternative
choices (together: Tout).
Imputation for population analyses. Analyses of simultaneously recorded neurons require an observation for each combination of

neuron and trial, but some cells were not held for thewhole duration of the session. Becausewe did notwant to discard these neurons
or trials and these data were missing at random (no systematic biases in choices or states for missing data), we imputed the mean
firing rate for the trials preceding or following a loss of isolation (after (Friedman et al., 2001)). The mean firing rate was calculated
across all choices, so this procedure effectively decreased the impact of these neurons on the targeted dimensionality analyses
without entirely excluding them. Some imputation was done for 12% of neurons, and constituted #3% of observations. Excluding
trials with any missing neurons or neurons with any missing trials produced similar results, though statistical power was lower.
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Targeted dimensionality reduction. To determine how choice-predictive network states evolved across trials, we used a form of
targeted dimensionality reduction based on multinomial logistic regression (after (Cohen and Maunsell, 2010; Mante et al., 2013)).
This allowed us to identify a choice-predictive subspace in the activity of simultaneously recorded neurons and to examine how
goal states altered choice-predictive population dynamics.

Briefly, within the axes defined by the firing rates of simultaneously recorded neurons, we used one-versus-all multinomial logistic
regression (mnrfit, MATLAB) to find the hyperplanes (weighted combinations of neuronal firing rates) that best predicted the choice
the monkey would make. These weights of simultaneously recorded neurons then formed the bases of our choice-predicitive
subspace and we projected each trial’s neural activity into the choice-predictive subspace.

The approach starts by finding binary classifiers that separate the pattern of neural activity that predicts one choice from the
pattern that predicts other two options. In general, logistic regression finds the separating hyperplane (linear combination of feature
weights) that best differentiates, in the maximum likelihood sense, observations that belong to a class (labeled true) from observa-
tions that do not (labeled false). One classifier is needed to differentiate two classes, and in K-multi-class one-versus-all classifica-
tion, K-1 classifiers are needed to fully separate the observations. The final Kth choice serves as the reference against which the other
K-1 choices are compared and the true observations for the final Kth choice are the false observations for all of the other choices. We
fit a system of K-1 independent binary classifiers of the form:

pðchoice= ijXÞ=
!

1

1+ e!ðXbiÞ

"

Where X is the trials by neurons matrix of firing rates of simultaneously recorded neurons, including a first column of ones for the
intercept. Equivalently, we can invert the logistic link function:

log

!
pðchoice= ijXÞ

1! pðchoice= ijXÞ

"
=Xbi

Fitting the classifier (finding the maximum likelihood solution for bi) finds the separating hyperplane within neuron-dimensional
space that best differentiates neural activity on trials in which option i is chosen from neural activity on other trials. The separating
hyperplane for each choice i satisfies:

Xbi = 0

If there were only two neurons (features for classification), the choice-predictive vector would be the vector orthogonal to the sepa-
rating hyperplane. That is, the choice-predictive vector is the one along which increasing distance from the origin reflects increasing
log odds that a target will be chosen (for positive values) or not chosen (for negative values). The position of each trial along this
choice-predictive vector is calculated via scalar projection. Each trial is represented as a column vector of firing rates, xi, and
then its projection onto the unit vector orthogonal to the separating hyperplane is:

di =

!
1

kbi k

"
bT
i x0

In more than two dimensions, there are many orthogonal vectors, but this same scalar projection gives the shortest distance from
each trial to the separating hyperplane: that is, the projection of the trial onto the choice-predictive vector from this classifier. Inmatrix
notation:

di =

!
1

kbi k

"
Xbi

At this point, it should be clear that this projection is proportional to the log odds of making that choice, up to a factor determined by
the magnitude of b. That is:

Xbi =dikbi k = log

!
pðchoice= ijXÞ

1! pðchoice= ijXÞ

"

To preserve the intuitive relationship between subspace position and the log odds of choice, we drop the scaling factor and
calculate each trial’s projection along choice-predictive axis i as:

proji =Xbi

One regression was used to find the projection onto the vector that predicts target 1 choices and a second was used to find the
projection onto the vector that predicts target 2 choices. These defined the bases of the choice-predictive subspace (Figure 4B).
Here, the vector predicting target 3 choices is the negative of both the target 1 and target 2 axes (that is, the vector that predicts target
3 choices is the one along which we have increasing confidence that neither target 1 nor target 2 will be chosen).

For all targeted dimensionality reduction analyses, the separating hyperplanes were calculated based on the average firing rates
across the whole-trial epoch. For clarity in the illustration in Figure 4B, separating hyperplanes were re-calculated within each time
bin, but fixed bases calculated from whole-trial firing rate were used in all analyses.
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Relationship between targeted dimensionality reduction and decoding. It should be clear that the same regression that is used to
perform targeted dimensionality reduction can also be used to decode choice from the neural activity. To decode choice, we calcu-
late the regression coefficients and the XbI for each choice, at each time point before the saccade, just as in the targeted dimension-
ality reduction. Next, calculate the probability of each of the three options from the multinomial regression model (Friedman et al.,
2001) and take the maximally probable choice as the prediction for each trial. Finally, we evaluate decoding accuracy by asking
how often the choice predicted by the model coincides with the choice the monkey made.
The time course of decoding accuracy was similar to the results of targeted dimensionality reduction and is illustrated in Figure S4.

However, converting to choice probability requires a nonlinear transformation of the neuronal representation of each choice, which
can obfuscate real differences in neural activity. For example, while decoding accuracy is largely flat for#200ms before the saccade,
the peak of the XbI (log odds) of the chosen and unchosen options is at the time of the saccade (compare Figures S4A and S4B with
Figures S4C and S4D). This occurs because an equivalent change in choice-predictive neural activity has different effects on
decoded choice probability, depending on the baseline level (i.e., a comparatively large effect when choice probability is close to
chance, and a comparatively small effect when choice probability is close to 0 or 1). Because choice probability is strongest at
the time of the saccade, the effects of the nonlinearity will also be most pronounced at this time. For these reasons, we performed
most of our population analyses in the untransformed space, where changes in firing rate had an equivalent effect on our dependent
measures, no matter the current baseline level of choice-predictive information.
Availability of choice information during exploration. In order to directly ask whether less information about upcoming choice was

available during exploration (rather than a change in tuning, for example) we usedmultinomial logistic regression (MATLAB: mnrfit) as
before to predict choice from neural activity during explore choices and count-matched subsets of exploit choices (to control for any
effect of trial number). Models were trained only on exploit trials or only on explore trials, then tested on held out subsets of those trials
(tested on 10 held out trials, 30 repetitions of training and testing). Models were fit to the whole-trial epoch, which included themotor-
related activity.
Scatter index: In order to calculate how much neural activity on each trial was typical of other trials in which the monkey made the

same choice, we used a typical measure of clustering.

scatter=
dwithin

dbetween

Where d was the average Euclidean distance between points in the choice-predictive subspace. The scatter index was thus close
to 1 (high scatter) when choice-predictive neural activity was not more similar to other trials were themonkeymade the same physical
choice, compared to trials where themonkey chose one of the other two options. Conversely, a scatter index less than 1 (low scatter)
indicates that neural activity clusters with other trials where the monkey made the same physical choice.
Mixing pseudo-trials. Because choices were autocorrelated, ‘‘choice-predictive’’ activity might not simply reflect the decision-

making process on the present trial, but instead could also incorporate information about the last choice that was made. Exploit
choices tended to be repeat choices, so the combination of this-choice and last-choice activity reduce scatter in exploit trials
(and vice versa for explore trials). To evaluate the hypothesis that scatter was reduced during explore choices because population
activity reflected a mixture of information about the previous choice and the current choice, we created pseudo-trials that were a
mixture (average) of the choice-predictive activity from pairs of randomly selected exploit trials. A different sample of pseudo-trials
was constructed for each possible permutation of the different options (n = 6 for 3 choice options). The number of pseudo-trials
matched the number of explore trials in each condition (where a condition was a combination of the present choice and the last
choice). The scatter index was then calculated as before, with the distances to same-condition-choices (matching both the present
trial and the last trial) in the numerator and distance to the third (non-matching) choice trials in the denominator. This procedure
created a distribution of scatter indices under the hypothesis that neural activity on explore trials was simply amixture of two different
types of exploit-like trials: one reflecting the current choice, and one reflecting the previous choice.
Method for evaluating alternative explanations. Explore and exploit choices differed in a number of continuous dimensions

(e.g., Figure 2). To determine whether any of these variables better explained the results, we fit the following GLM to both single-
unit target selectivity and the single-trial network scatter:

by = b0 + b1ðSÞ+ b2ðfÞ+ b3ðfSÞ

Where S is a logical vector indicating whether a trial was exploratory (1), f is a vector of centered and scaled observations of the
confounding variable, and y is target selectivity or neural scatter. b1 thus captures the offset between exploration and exploitation
(state effect), accounting for any main effect of or interaction with the confounding variable. Fitted beta weights and p values for a
number of confounds are reported in Table S3 and illustrated in Figure S5.
For within-cell target selectivity, the model was fit to binned data: each session’s trials were separated into 5 quantile bins and

target selectivity was calculated within each cell, within each state (explore and exploit). Five bins were selected tominimize the num-
ber of empty bins per cell, but results were identical with either more (10) or fewer (3) bins. For predicting within-trial neural scatter, the
model was fit to raw data and additional dummy terms were included to account for any main effect of session (one term for each
session minus one).
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Divergence in neural trajectories: In order to estimate the rate of divergence in the neural trajectories, we fit linear, exponential, and
piecewise linear models to predict the between-choice distance in presaccadic neural trajectories (d) as a function of time before the
choice (t; in milliseconds). Then, standard model comparison techniques were used to identify the most probable model (Figures S4
and S5). The models were formulated as follows. Linear:

bd = b0 + b1t

Where B0 and B1 are offset and slope parameters. Exponential:

bd = b0 + b1e
t=t

Where B0 and B1 are offset and scale parameters, respectively, and t is the time constant of exponential divergence in trajectory
distances. Piece-wise linear:

bd =

#
b0 + b1t t < c

b0 + b1c+ tðt ! cÞ tR0

Where B0 and B1 are offset and slope parameters, c is a fitted parameter identifying the time point at which the rate of separation
increases, and t is the change in the rate after time c. All three models were fit with a nonlinear least-squares cost function and the
models’ log likelihoods, AIC and BIC values are:

logð[Þ= ! ðn=2Þ,logðSSE=nÞ
AIC= ! 2,logðlÞ+ 2ðk + 1Þ
BIC= ! 2,logðlÞ+ ðk + 1Þ,logðnÞ

Where SSE is the sum of squared errors, n is the number of observations, and k is the number of parameters in each model (see
(Burnham and Anderson, 2002)). To calculate the relative likelihood of the two models, we calculated the AIC and BIC values and
weights (Burnham and Anderson, 2002) and the results from this analysis are reported in Table S4.

Spike count autocorrelation: In order to determine how transitions into exploration affected persistent patterns of activity in the
FEF, we calculated the spike count autocorrelation function separately for exploit trials that were and were not separated by explore
choices. For each single neuron and multiunit where a minimum of 5 trial pairs was observed in each bin (where a bin was a com-
bination of trial lag and condition, n = 514 units), we calculated the autocorrelation at each possible trial lag t (t > 1, t % 25).

rðtÞ=E½NtNt + t' ! E½Nt'E½Nt + t'
s2
Nt

Where E is the expected value, N is the observed spike count at time t and time t+t, and s is the standard deviation of the spike
count, computed across all trials for the choices made at each time point t and t+t. Spike counts were calculated from a whole-trial
epoch, ranging from 200ms before stimulus onset to 400ms after, though the results were insensitive to the specific choice of epoch.
In order to isolate the residual variance in spike count that could not be accounted for by differences in mean firing rate or variance
across trials, spike counts were z-scored within-choice (after (Bair et al., 2001)). After this normalization, ENt = ENt+t = 0, and s = 1, so
the equation simplifies to:

rðtÞ=E½NtNt + t'

The normalization was designed to isolate the residual variance in the spike count from any contribution of choice information. We
confirmed that this was the case empirically. Following normalization, correlations were not significantly higher for randomly selected
same-choice exploit trials than for different-choice exploit trials (paired t test, p > 0.7). Moreover, qualitatively similar results to those
reported in Figure 5Cwere obtained using only same-choice explore-separated trials, though the power of this analysis was substan-
tially lower, owing to fewer neurons with a sufficient number of observations and fewer observations per trial lag.

Significant differences between explore-crossing and non-explore crossing correlations were assessed at each time lag via boot-
strapping. The observations were resampled, with replacement, 1000 times. Resampling was done without respect to the original
labels and countmatched to the number of observations for each label. The 1000 repetitions produced 1000 differences in correlation
values for each time lag: a distribution of effect sizes under the null hypothesis that there was no difference in spike-count correlations
between explore-separated and non-explore-separated trials. If the autocorrelation function of explore-separated trials was not
different from the autocorrelation of non-separated trial pairs, we would expect the explore-separated autocorrelation function to
fall within this null distribution. Therefore, significance (Figure 5C) was assessed as the fraction of bootstrapped samples that
were as big or bigger than the real difference observed at each time lag and corrected for multiple comparisons.

Process dynamics of scatter recovery:Whenaveraged across trials, neural scatter decreased slowly after exploration (Figure 5A,B).
This was in contrast to the sudden increase in scatter at the start of exploration and the sudden changes in strategic or rule-related
neural activity that have been reported in other tasks (Durstewitz et al., 2010; Karlsson et al., 2012). However, it was possible that the
slow changes in trial-averaged scatter were caused by abrupt changes within trial sequences. A simple misalignment across
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sequences would make scatter appear to recover slowly, despite a generative process of discrete jumps. We evaluated this possi-
bility via examining the distribution of changes in scatter (‘‘scatter step sizes’’).
In a jump process, scatter step sizes would by highly variable because they would contain a mixture of large jumps and small,

steady-state adjustments. Conversely, in a continuous process, the variance in the distribution of step sizes would be lower. In
the present dataset, it was possible to benchmark the variance in scatter step sizes from a jump process via examining the variance
in scatter step sizes during transitions into exploration—a period in which discrete jumps in the scatter index obviously occurred (Fig-
ures 5A and 5B). To create reference distributions under this hypothesis, we calculated the scatter step sizes during transitions into
exploration (on explore trials and the 10 trials preceding exploration). Scatter step sizes were then downsampled with replacement to
match the number of post-exploration trials (within 10 trials following exploration). This procedure created 1000 reference distribu-
tions for the scatter step sizes that would be observed if post-explore adjustments were caused by a jump process similar to the one
observed during transitions into exploration.

DATA AND SOFTWARE AVAILABILITY

Data and software are available upon request to the Lead Contact (Becket Ebitz, rebitz@gmail.com). Code for some analyses
(discrete exponential mixture models, Wiener filter, etc.) is available on the Lead Contact’s webpage (https://rebitz.github.io/
code.html).

NEURON 14038

Neuron 97, 1–12.e1–e11, January 17, 2018 e11

Please cite this article in press as: Ebitz et al., Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex, Neuron (2017),
https://doi.org/10.1016/j.neuron.2017.12.007

View publication statsView publication stats


