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SUMMARY

Afrequentassumption invalue-baseddecision-making tasks is thatagentsmakedecisionsbasedon the feature
dimension that reward probabilities vary on. However, in complex, multidimensional environments, stimuli can
vary onmultiple dimensions at once, meaning that the feature deserving themost credit for outcomes is not al-
ways obvious. As a result, individuals may vary in the strategies used to sample stimuli across dimensions, and
thesestrategiesmayhaveanunrecognized influenceondecision-making.Sex isaproxy formultiplegeneticand
endocrine influencesonbehavior, includinghowenvironments are sampled. In this study,weexamined thestra-
tegies adopted by female andmalemice as they learned the value of stimuli that varied in both image and loca-
tion inavisually cued two-armedbandit, allowing twopossibledimensions to learnabout. Femalemiceacquired
thecorrect image-valueassociationsmorequickly thanmalemice, preferringa fundamentally different strategy.
Female mice were more likely to constrain their decision-space early in learning by preferentially sampling one
location over which images varied. Conversely, male mice were more likely to be inconsistent, changing their
choice frequently and responding to the immediate experience of stochastic rewards. Individual strategies
were related to sex-biased changes in neuronal activation in early learning. Together, we find that in mice,
sex is associated with divergent strategies for sampling and learning about the world, revealing substantial un-
recognized variability in the approaches implemented during value-based decision making.

INTRODUCTION

Value-based decision-making tasks are used to determine the

cognitive and neural mechanisms for reward learning and

choice.1–4 One frequent assumption is that agents make their

decisions based on the feature dimension that the experimenter

has designed the reward probabilities to vary on. However, in

complex, multidimensional environments, stimuli can vary on

multiple feature dimensions like identity and location simulta-

neously, and the features that predict reward outcomes are not

always obvious.5 As a result of this complexity, differences in

learning and decision making within and between individuals

could result as much from differences in the strategies employed

to learn, as they could from the capacity to learn. Understanding

the diversity of strategies employed during multidimensional de-

cision making, and the factors that influence strategy selection,

is essential for not only understanding typical decision making

but also vulnerability to neuropsychiatric disease.6–9

Rodents, particularly mice, are increasingly used to probe the

neural mechanisms of value-based decision making3,10–14 and

can be tested in large numbers to allow the analysis of individual

differences in decision strategies, including the influence of sex

differences. Sex is a proxy for multiple genetic, developmental,

and endocrine mechanisms that vary across individuals15–17

and could be a source of diversity in learning strategies.18–20

Indeed, sex differences in rodents (and gender differences in hu-

mans) appear in a variety of value-based decision-making tasks,

but these effects are frequently inconsistent with a simple differ-

ence in learning rates,21–23 suggesting sex influences on latent

strategies as an alternative hypothesis. However, much of this

literature has used tasks with low trial counts and/or choices

that vary on only one dimension, which are not well suited to

elucidating the strategies employed during decision making in

higher dimensional environments.

To determinewhether there are sex differences in the strategies

employed during value-based decision making, we trained male

and femalemice on a two-dimensional decision-making task: a vi-

sual bandit.1,2,4,24–28 While all animals eventually reached the

same performance level, female mice learned more rapidly than

males on average. Because choice could vary in two dimen-

sions,29,30 we asked whether individual animals were adopting

different strategies during learning. Sex explained a substantial

fraction of individual variability in strategy. Female mice were

more likely to systematically confine their choices to one spatial

location, accelerating their learning about image values by con-

straining the decision space. Conversely, males used a
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combination of image and spatial dimensions, were sensitive to

the stochastic experience of reward, and changed choice strate-

gies frequently. During early learning, gene expression for the

neuronal activation marker c-fos in the nucleus accumbens and

prefrontal cortex significantly correlated with the female-biased

strategy. These results show that individuals adopt widely diver-

gent strategies for interacting with the same uncertain world and

that sex is a factor in guiding these strategies.

RESULTS

Age-matched male and female wild-type mice (n = 32, 16

per sex) were trained to perform a visually cued two-armed

bandit task (Figure 1A). This visually cued task design was

similar to those employed in humans and nonhuman pri-

mates,1,2,4,24–28,31,32 in contrast to the spatial bandit designs

frequently employed with rodents.33–36 Animals were pre-

sented with a repeating set of two different image cues

which were each associated with different probabilistic

reward outcomes (80%/20%) (Figure 1B). Reward contin-

gencies were yoked to image identity, which was random-

ized with respect to location on each trial. This means

that the sides (left/right) where image cues appeared were

not informative of the reward contingencies. We repeated

the task with six different sets of image pairs. Two out of

six image pairs were excluded before analysis due to

extremely high initial preference (>70%) for one image. We

included four image pairs with equal initial preference for

each image and quantified behavioral data in bins of 150 tri-

als for each animal.

Females Showed Accelerated Learning, but Males and
Females Reached Equivalent Final Performance
To examine learning, we first calculated the average probability

of choosing the high-value image (23 bins in total). Regardless

of sex, mice eventually learned which image was associated

with the higher reward probability (Figure 1C, GLM, main effect

of sex, p = 0.51, b1 = –0.05; main effect of number of trials, p <

0.0001, b2 = 0.10, see Equation 1 in STAR Methods). However,

females repeatedly learned the image pair discrimination signif-

icantly faster than did males (GLM, interaction term, p < 0.05,

b3 = �0.02). We compared these results to a deterministic

version of the task in the same animals, in which one image

was always rewarded (100%) and the other was never rewarded

(0%). We did not find any significant sex difference in rate of

learning across trials in the deterministic task (Figure 1D), sug-

gesting that the difference was revealed by the stochastic expe-

rience of reward.

Females Systematically Reduced the Dimensions of the
Task by Strongly Preferring One Side
Since rodents are generally highly spatial, we hypothesized that

mice might have a bias toward using spatial information earlier in

the task before they learned the reward contingency. Consistent

with our hypothesis, we observed a short period of heightened

side bias37 (either left or right in females early in learning (Fig-

ure 1E) which seemed to precede the acquisition of the reward

contingency. Following this period, female mice improved their

percentage of choosing high-value image more rapidly than

males (GLM, main effect of sex, p < 0.001, b1 =�0.129; main ef-

fect of number of trials, p < 0.001, b2 = �0.017).
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Figure 1. Females Showed Accelerated Acquisition of the High-Reward Probability Image in a Stochastic Two-Armed Visual Bandit Task

(A) Schematic of the mouse touch-screen operant chamber.

(B) Schematic of two-armed visual bandit task. Images varied between the two locations across trials.

(C) Average learning performance (percent correct) across four repetitions of the task in males and females.

(D) No sex difference in learning performance was observed in deterministic reward schedule. Data shown as bins of 50 trials.

(E) Females displayed stronger side bias early on in learning. Data shown as bins of 150 trials unless specified otherwise. * indicates p < 0.05. Graphs depict

mean ± SEM.
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An outcome-insensitive side bias is only one of several ‘‘local

strategies’’ that mice could have been using as they learned the

reward contingencies. For example, mice could have been using

an outcome-sensitive win-stay strategy based on spatial or im-

age dimension, where the side or image is repeated if it was re-

warded. Likewise, animals could use an outcome-sensitive im-

age win-stay strategy, or an outcome-insensitive image bias.

To understand how these different local strategies were em-

ployed by mice over time, we constructed a generalized linear

model (GLM) to predict each choice based on a weighted com-

bination of local strategies. The model had a term to account for

two classes of basic strategies: outcome-independent (bias)

strategies and outcome-dependent (win-stay) strategies (Fig-

ure 2A, see Equation 4 in STAR Methods). Fitting the GLM al-

lowed us to estimate how much each of these four strategies

was employed within each animal in each bin of 150 trials. We

will call this set of beta weights—the precise pattern of local stra-

tegies employed over time—the ‘‘global strategy’’ employed by

each individual animal.

Across all animals, we found that a specific pattern of local

strategies was used when learning image pairs (Figure 2B). Ani-

mals showed an early tendency toward repeating one side, giv-

ing way to an image win-stay, and finally repeating an image (the

optimal strategy) late in learning. To examine whether sex influ-

enced the strength of this global strategy, we compared the

global strategy beta weights used by male and female animals.

We observed this consistent and pronounced pattern of strategy

procession only in females (Figure 2C). In contrast, in males we

found a markedly reduced influence of either spatial strategy,

while the weight of both image-based strategies increased

slowly over time (Figure 2D).

To examine how individuals varied in their use of local strate-

gies, regardless of sex, we used an unsupervised method: prin-

ciple component analysis (PCA). We represented each animal’s

behavior as the set of beta weights for the four local strategies

identified above, in each trial bin and for each image pair. The

principal components of the set of individual strategy vectors

then reflect the axes that explain the most inter-individual vari-

ability in these beta weights, meaning that combinations of local

strategies over time that differ the most between individuals.

Principal components (PC) 1 and 2 captured the majority of the

interindividual variance: 59% of the variability between animals

(Figure 2E). PC1 reflected a global preference for side- or im-

age-based responding and did not significantly differ between

sexes (receiver operating characteristic analysis, AUC = 0.43; fe-

males = 0.03, males = �0.03; mean(F-M)0.07, 95% CI = [�1.70,

1.80], t(30) = 0.08, p > 0.9). PC2, however, mirrored the spatial-

to-image pattern of local strategies observed primarily in female

mice (Figures 2C and 2D). This principal component explained a

large fraction (22%) of the interindividual variability in our

animals. Principal component 2 was identified as a pattern of

strategies across individuals without regard to sex; however, fe-

males and males were highly discriminable in terms of their PC2

scores (AUC = 0.86, females = 0.98, males = �0.98; mean(F-M) =

1.96, 95% CI = [0.87, 3.05], t(30) = 3.67, p < 0.001). Though the

sexes were not categorically distinct along this axis, they were

highly discriminable, and most males had negative PC2 scores

(Figure S1). No other PCs differed between sexes (all AUC <

0.6, all p > 0.4). There were no significant differences in PC2

score of each image pair within each animal (main effect of image

pair: F(3,90) = 0, p > 0.99; subject matching (F(30,90) = 5.724, p <

0.0001). Thus, the PC2 score of each animal was stable across

all four image pairs, suggesting that PC2 score reflects a prop-

erty of an individual animal, but not of the immediate task or a

specific image pair. Together, these results demonstrated sub-

stantial inter-individual variability in strategy selection in the

same multidimensional decision-making task and suggest that

one major axis of strategic variability is sex.

Female-Biased Early Side Preference Did Not Speed
Decision Making
The global strategy pattern identified by our GLM and principal

components analysis was preferentially employed by females

as they learned the task, suggesting that this strategy might be

responsible for faster acquisition of image-value responding in

females. However, it remained unclear why this might be the

case. One possibility is that the early side preference strategy

was a fast and frugal heuristic for decision-making. Studies

show that decision makers use simplifying heuristics to minimize

cognitive demands.38–41 Since heuristics are simplifying mental

shortcuts38 and choice response time is proportional to the

computational complexity of the strategy used to make

choices,42–44 the use of heuristics should speed decision mak-

ing. Therefore, to determine whether the early side-bias was a

kind of simplifying heuristic, we asked whether it sped reaction

time for decisions. Specifically, we asked (1) whether females re-

sponded faster across all trials and (2) whether females were

fastest when the side preference was the strongest. We

computed average RTs across 23 bins of 150 trials for males

and females. Contrary to our hypothesis, female reaction times

were slower during early learning (bin 1–15) (GLM, interaction

term, b3 = 0.03, p = 0.0007, see Equation 1 in STAR Methods)

and significantly slower than males across all trials (GLM, main

effect of sex, b1 = �0.62, p < 0.0001; males = 1.89, SD = 0.13;

females = 2.04, SD = 0.21). The reaction time decreased as the

animals ran more trials in both males and females (Figure 3A,

GLM, main effect of number of trials, b2 = �0.04, p < 0.0001).

Critically, this was not due to sex differences in motor perfor-

mance, as there was no difference between response time in

males and females in the deterministic schedule (Figure S2).We

Figure 2. Female Mice Use a Procession of Strategies, Initially Using a Spatial Bias Followed by a Switch to Responding Based on Image

Domain

(A) Schematic of four basic local strategies based on choice and reward history of image and spatial dimensions of the task.

(B) The GLM beta weights of the four local strategies, averaged across all animals.

(C and D) Same as (B), for female mice (C) and male mice (D), respectively.

(E) A principal component analysis (PCA) was conducted on the estimates of global strategy strength over time across all animals regardless of sex. Left: variance

explained by each principal component (PC). Middle: the coefficients of the first two PCs. Right: PC scores for individual male (blue) and female (pink) animals, for

PC1 (top) and PC2 (bottom). See also Figure S1. Data shown as bins of 150 trials. Graphs depict mean ± SEM.
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conclude that early side preference in females did not speed

their decision making and thus was unlikely to be a simplifying

heuristic.

We next considered two additional hypotheses. Slow

response times in females could reflect increased conflict be-

tween intrinsic side preference and value-based choice

compared to males. If this is true, then females would only be

slower than males when conflict is present: when they choose

a non-preferred side. When choosing the preferred side, they

may even be faster than males. However, we found that the

response time of females was significantly longer than that of

males both when choosing a non-preferred side (Figure 3B,

GLM, main effect of sex, b1 = �0.58, p < 0.0001) and when

choosing a preferred side (GLM, main effect of sex, b1 =

�0.42, p < 0.0001). This effect was strongest in the earliest

stages of training (GLM, preferred side: main effect of number

of trials, b2 = �0.04, p < 0.0001, interaction term, b3 = 0.02,

p = 0.001; nonpreferred side: main effect of number of trials,

b2 = �0.03, p < 0.0001, interaction term, b3 = 0.02, p = 0.007).

Therefore, slower response times in females were not driven

solely by those trials with a conflict between preferred side and

value, but did seem to be enhanced in the earliest stages of

training when it was least clear what the optimal choice was,

and decisions might be more demanding as a result.

This led to a third hypothesis: that female response times were

slower because this global strategy pattern was more computa-

tionally demanding. If so, females would have slower response

times during both preferred and non-preferred side choices, as

observed. If the female-biased global strategy procession was

computationally expensive or time consuming to execute, then

individual variability in the use of this strategy should predict vari-

ability in response time. We quantified individual variability in

strategy with PC2 scores and asked whether there was a direct

correlation between PC2 score and reaction time across individ-

uals, regardless of sex. PC2 scores were positively correlated

with reaction time (Figure 3C, Spearman’s correlation, rs =

0.452, p = 0.009; Pearson’s correlation, r = 0.347, p = 0.051),

suggesting that the animals using the early side bias strategy

tended to make slower decisions. The fact that the nonpara-

metric Spearman correlation was significant but the Pearson

correlation was not implied that the relationship between these

variables was probably nonlinear. However, this analysis cannot

rule out the possibility that this relationship between PC2 and RT

is mediated by some nonlinear effect of sex on both PC2 and RT.
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Figure 3. Female-Biased Early Side Preference Did Not Speed Decision Making

(A) Predominantly using the early side preference, females responded slower during early learning. See also Figure S2.

(B) Average reaction time of both sexes when choosing a preferred side and a nonpreferred side across bins of 150 trials.

(C) Correlation analyses revealed a significant positive correlation between PC2 scores and reaction time.

(D) One-sample t test was conducted across bins to compare the difference in reaction time (RT) between rewarded and unrewarded trials to 0 (when there is no

effect of past outcome on the reaction time). Male mice have significant RT effects on the last reward. There was no difference in reaction time between rewarded

and unrewarded trials in female mice.

(E) Average RT difference following a rewarded versus an unrewarded trial across all trials. Overall, males responded faster when the last trial was rewarded than

unrewarded. Data shown as bins of 150 trials. * indicates p < 0.05. Graphs depict mean ± SEM.
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Regardless, althoughwe tend to think of a side bias as not cogni-

tively demanding, here, the animals that were slowest to make

decisions were those who used this strategy. This is difficult to

reconcile with the idea that the females used this strategy as a

fast and frugal heuristic.

Male Strategies Were Not More Random
Although our regression analyses captured the procession of

strategies typically employed as female mice that learned the

task, they provided little insight into what the males were doing

during early learning. Substantial prior research has found higher

impulsive and exploratory behavior in males compared to fe-

males,21,45–48 so perhaps males, as a group, lacked a coherent

strategy because they simply chose randomly before the reward

contingencies were learned. Instead, across several analyses,

we found that males’ choices depended more on both past out-

comes and past choice history than did females’.

One classic, agnostic measure of outcome sensitivity is

response time speeding. Males responded significantly faster

when they had just received a reward (Figures 3D and 3E, one-

sample t test, mean RTreward – RTno reward = �0.14, 95% CI =

[�0.23, �0.05], t(15) = �3.38, p = 0.004). Conversely, the reac-

tion times of females were not systematically affected by the

outcome of the last trial (mean RT effect = �0.03, 95% CI =

[�0.13, 0.06], t(15) = �0.75, p = 0.47). These results reinforce

the idea that females were following a global strategy, but not

the idea that males lacked evidence of a global strategy because

they were more random. Instead, males were more sensitive to

reward outcomes than females in terms of response time.

We next examined whether males’ choices, in addition to their

response times tomake those choices, were also more outcome

sensitive than those of females. Although our regression results

did not suggest that males were more likely to follow a classic

win-stay/lose-shift policy than females (see also Figure S3),

win-stay/lose-shift could not capture all possible reward-depen-

dent behaviors in this two-dimensional task. For example, rather

than always repeating a side or an image after reward, animals

could have different policies for different combinations of sides

or images or follow outcome-based alternation rules. To account

for the breadth of ways that animals could be responding to

reward, we compared the pattern of choices following rewards

with the pattern following no reward, allowing us to estimate

how much animals adapted their choices in responses to re-

wards without assuming what those choices were. We found

that males’ choices were much more outcome sensitive. Male’s

choices after a reward, compared to females’, diverged more

from their behavior after non reward (Figure 4A, GLM,main effect

of sex, b1 = 4.55, p < 0.0001). Note that the optimal strategy in

this task is to consistently choose the high reward image regard-

less of outcome. Consistent with this, both males and females

learned to become less reward sensitive over time (Figure 4A,

main effect of number of trials, b2 = �0.99, p < 0.0001). Thus,

males were more outcome sensitive than females when

measured either by response time or by choice, again suggest-

ing that males were not more random.

The males’ choices were more organized with respect to past

reward than females, but were they also more organized with

respect to their previous choices? Within each block of trials in

each animal, we calculated conditional mutual information for

each bin,49,50 which quantifies the dependence of current choices

(side, image) on the previous choice given the outcome of the pre-

vious trial (Figure 4B). Note that this is related to our previous

regression results in Figures 2B–2D but allows us to quantify

structure in amodel-freeway. The result suggested thatmutual in-

formation decreased over time in both sexes, reflecting the

gradual acquisition of the optimal strategy for this task (repeat

high-value image no matter the previous trial) (Figure 4B, GLM,

main effect of number of trials, b2 =�0.001, p = 0.0002, see Equa-

tions 1 and 5 in STARMethods). However, the mutual information

of male mice was higher than that of females (main effect of sex,

b1 = 0.043, p < 0.0001), particularly early in learning (interaction

term, b3 =�0.002, p < 0.0001). This suggests that male strategies

were not only more outcome-sensitive but also more dependent

on their past choices, again indicating that the strategy employed

by males was not a random one.

Males Changed Their Strategies More over Time
Although males were more outcome and choice sensitive than

females, our regression analysis did not show a pronounced or

unified strategy pattern preferred by males. This could suggest

that males were less consistent in their choice of strategy across

individuals and/or across time (i.e., within the same individual).

To test these hypotheses, we used a model-free analysis to

compare how similar one set of choices was to another (similar

to our approach in Figure 4A). We expressed the choices in

each bin as a probability vector, with each element of the vector

reflecting the probability of that unique combination of behaviors

{last choice, last outcome, current choice}. The average angle

between any two of probability vectors reflects the variability in

choices across conditions. Males were not more idiosyncratic

than females on a population level; the choices of any given

male were not more variable from other males than any given fe-

male’s choices were from other females (Figure 4C, GLM, main

effect of sex, b1 = �1.47, p = 0.11). However, a given male

was more variable within himself, both across trial bins within

one image pair (Figure 4D, GLM, main effect of sex, b1 = 4.24,

p < 0.0001; Figure S4 for the same analysis across non-adjacent

blocks) and across multiple image pairs (Figure 4E, GLM, main

effect of sex, b1 = 4.54, p = 0.047). Overall, the variability in

choices captured by these analyses decreased across time as

the divergent strategies used by individual animals started to

converge to the optimal strategy (GLM, main effect of number

of trials, within sex between subject: b2 = �0.78, p < 0.0001;

within subject across bins: b2 = �0.359, p < 0.0001). Together,

these results suggest that individual males tended to change

their strategies over days and repetitions of the same task, while

females employed a systematic strategy to each repetition.

Choice patterns are high dimensional, so to visualize the

change or stability in strategies in two dimensions we usedmulti-

dimensional scaling51–53 to visualize ‘‘strategy paths’’

throughout learning. This allows us to see the similarity between

patterns of choice across animals over time and across repeti-

tions (Figure 4F). Both representative male and female ‘‘strategy

paths’’ approached the optimal strategy over time. Consistent

with the quantification described above, the strategy path of

males is visibly more variable and different across repetitions

of the task, whereas the strategy path of a given female tends

to be more consistent across repetitions.
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Sex Mediated the Ability of Neuronal Activity to Explain
Strategy Selection
Learning and decision making are highly sensitive to alterations

in corticolimbic structures. However, it remains unclear how al-

terations in these structures predict choice strategy, much less

sex differences in strategy. To address this question, we

examined neuronal activity in several corticolimbic brain regions

through the expression of c-fos, an immediate early gene that is a

marker of neuronal activation. The animals were sacrificed after

the second day of a new, final image-reward pair (after 400–500

trials), corresponding to when the female side bias was greatest.

We compared mRNA expression level for c-fos in homogenized
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Figure 4. Male Mice Were More Likely to Differ from Themselves over Time, with Choice Patterns Dependent on Past Outcomes

(A) Comparing choice strategies as vector angles. Left: we calculate the joint probability distribution of all possible choices at time t (image3 side) and all previous

choices at t-1. This probability distribution can be thought of as a vector on the probability = 1 simplex (middle). We then compare choice strategies by measuring

the angle between choice strategy vectors, here between strategy vectors following a reward and following no reward. Right: average angle between choice

strategy vectors following reward and no reward, plotted separately for males (blue) and females (pink). See also Figure S3.

(B) Left: if choice on trial t is independent of choice on the previous trial (t-1), mutual information will be low. Conversely, if choice t depends on t-1, mutual

information will be high. Right: conditional mutual information is higher in males, indicating that responses are more dependent on the previous trial variables than

they are in females.

(C) Average angle between choice strategy vectors between animals within sex.

(D) Average angle between choice strategy vectors within animals across trial bins See also Figure S4.

(E) Average angle between choice strategy vectors within animals across repetitions of the task.

(F) Multidimensional scaling (MDS) was used to reduce the dimensionality of the strategy space in order to visualize each animal’s strategy paths. Each graph is a

different animal, with the colors representing repetitions of the task. The star represents the optimal strategy for each projection (i.e., the choice pattern that only

repeats high value image). Note that the strategy paths of both sexes are approaching the optimal strategy point. See also Figure S5. Data shown as bins of 150

trials. * indicates p < 0.05. Graphs depict mean ± SEM.
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Figure 5. Both Sex and Neuronal Activity Can Ac-

count for Strategy Selection, but Sex Mediated the

Ability of Neural Activity to Explain Strategy Selec-

tion

(A) cFos gene expression (qRT-PCR) in five brain regions:

nucleus accumbens (NAc), dorsal medial striatum (DMS),

amygdala (AMY), hippocampus (HPC), and prefrontal cor-

tex (PFC). Female mice showed elevated c-fos expression

across all five brain regions. Extracted brain sections for

each brain region are shown in the altas.

(B) regression coefficient of c-fos expression in NAc and

PFC, and sex in predicting the use of PC2 strategy.

(C) Heatmap of correlation matrix of c-fos expression level

among five brain regions. Color bar, Pearson’s r.

(D) cFos gene expression in NAc and PFC is significantly

correlated with the weight of PC2.

(E) Median split of c-fos expression in NAc and PFC and

PC2 scores within each sex.

(F) Sex mediated the relationship between c-fos expression

in NAc and PFC and PC2 scores. The top models demon-

strate the direct effect and the bottommodels demonstrate

the mediated effect. Effects are labeled with estimated

coefficients. The strength of the direct model is greatly

reduced after mediation, suggesting that sex mediated

neural measures in explaining strategy selection. See also

Table S1. Graphs depict mean ± SEM. Asterisks marked

significant effects (*p < 0.05 **p < 0.01 ***p < 0.001).

ll
OPEN ACCESS

8 Current Biology 31, 1–12, January 11, 2021

Please cite this article in press as: Chen et al., Divergent Strategies for Learning in Males and Females, Current Biology (2020), https://doi.org/10.1016/
j.cub.2020.09.075

Article



pieces of tissue from five brain regions, including nucleus ac-

cumbens (NAc), dorsal medial striatum (DMS), amygdala

(AMY), hippocampus (HPC), and prefrontal cortex (PFC), using

quantitative real-time PCR (Figure 5A). In each region, females

had a higher c-fos expression than males (unpaired t test, NAc:

t(30) = 2.41, p = 0.02; DMS: t(30) = 2.31, p = 0.03; AMY: t(30) =

4.05, p < 0.001; HPC: t(30) = 2.74, p = 0.01; PFC: t(29) = 3.163,

p = 0.003).

To understand whether activation of any of these brain regions

correlated with the side bias strategy, we constructed a GLM to

predict PC2 fromc-fos levels in eachbrain region. The results sug-

gested that only two regions, the NAc and PFC predicted strategy

use, as indexed by PC2 score (Figure 5B, GLM, NAc: b1 = 0.72,

p = 0.02; DMS: b2 = 0.48, p = 0.14; AMY: b3 = 0.52, p = 0.10;

HPC: b4 = 0.55, p = 0.08; PFC: b5 = 0.75, p = 0.02; sex was

included as a variable in the model and was also significant:

b6 = 0.99, p = 0.0009, Equation 2 in STARMethods). Correlations

between c-fos expression in NAc/PFC and PC2 scores were

further confirmed with a Pearson product-moment correlation

(Figures 5D–5E, NAc: r = 0.40, n = 32, p < 0.03; PFC: r = 0.41,

n = 32, p < 0.02). No region predicted PC1 scores in an identical

analysis. Because each region was also correlated with sex (and

sex independently predicted PC2), NAc and PFC could have

been the best predictors of PC2 because these regions were

the most strongly correlated with sex (Figure 5C). However, sex

was most strongly correlated with AMY, which was not a signifi-

cant predictor of PC2. This evidence is circumstantial, however,

and with 16 subjects per sex we lacked the power to measure

the correlation between cfos and PC2 within each sex. To under-

stand if sexmediated the relationship betweenNAcandPFCc-fos

activity and PC2 scores, we used a structural equation modeling

(SEM) approach54,55 to analyze the relationship between sex,

gene expression, and PC2 and latent constructs (Figure 5F; Table

S1). The results suggested that sex was a significant mediator of

the relationship between neural activation and PC2 in both NAc

and PFC, highlighting these regions as promising targets for future

studies looking at the effects of sex on the neural circuits respon-

sible for implementing strategic learning.

DISCUSSION

Male and female mice used a range of problem-solving strate-

gies in a stochastic two-dimensional decision-making task. In

the task, each cue had two dimensions—the identity of the im-

age and the location of the image—but animals did not appear

to know which was most predictive of reward. Although both

male and female mice eventually learned to choose the high-

value image, female mice learned more quickly. The dimension-

ality of the task allowed us to uncover sex differences in how the

animals achieved the associations across time. We discovered

that female mice were more likely to adopt a consistent and sys-

tematic strategy procession over time that constrained the

search space early in learning by preferentially sampling the out-

comes of images on one side (left or right). This approach, which

occurred when animals were most uncertain about the best

choice, may have permitted more rapid acquisition of the im-

age-value association. In contrast, males were less likely to

employ this systematic approach and instead responded to a

combination of visual and spatial dimensions, changed their

approach frequently, and were strongly influenced by the imme-

diate prior experience of reinforcement. While animals of both

sexes reached equivalent levels of performance, the strategic

paths individuals took to get there varied dramatically.

Sequential decision making and learning in rodents are often

studied with spatial bandit tasks, in which reward probabilities

are linked to sides that are visually identical.1,4,11,13,33,56 In these

spatial bandit tasks, side bias in choice has sometimes been

equated with inflexible, automatized habitual behaviors, and an-

imals displaying such bias were often excluded from experi-

ments.57–59 However, the slower choice response time in side-

biased females suggests that the early side preference was

more likely to be cognitively demanding than a heuristic. The an-

imals that used this approach appeared to ‘‘jump start’’ their

learning, suggesting that side-biased animals may covertly learn

about the correct dimension while behaviorally selecting the

wrong item and were able to convert this to successful learning

due to the stability of the task structure.

Traditional reinforcement learning (RL) models often employ

simplifying assumptions that agents select actions (1) based

only on reward-associated dimensions and (2) in a consistent

manner across learning. Our findings indicate that naturalistic

learning can violate both of these assumptions, yet be success-

ful. Analyses like the ones we perform here could help inform the

design of RLmodels in future work. For example, hierarchical RL

models60 can deal with changes in strategies over time, and

multidimensional RL models can incorporate feature-based

and higher dimensional learning.61

Our data implicate the prefrontal cortex (PFC) and nucleus ac-

cumbens (NAc) in the differences in strategy between males and

females. These regions have been widely implicated in reward-

guided decision-making, but so have the other regions we tested

for which we didn’t find a significant relationship to these strate-

gies.2,29,62 One possibility is that the PFC and accumbens are

particularly engaged in strategic decision making. This reso-

nates with previous studies that have implicated the PFC in im-

plementing strategies and rule-guided behaviors56,63–68 and

the NAc in selecting and implementing learning strategies.29,30

Implementing different strategies produces changes in how

different choice dimensions are represented in the PFC and

NAc,41 and lesions in the NAc can drive animals toward a low-

dimensional action-based strategy or prevent animals from

switching between strategies.2,30 These signals could be sex

biased: the PFC is sensitive to gonadal hormones during risky

decisionmaking,69 and dopaminergic function in the accumbens

has sex-specific effects on risky decisionmaking,70 perhaps due

to sex differences in dopamine neurons.71 Our result, that the

relationship between neural activity and strategy was mediated

by sex, is broadly consistent with this growing literature.

One fundamental unanswered question is why females tended

to employ a shared and systematic strategy. Zador (2019) recently

proposed that much of animal behavior is not dictated by super-

vised or unsupervised learning algorithms, but instead by biolog-

ical constraints72. ‘‘Habitual’’ or repetitive choice behaviors tend

to be enhanced in females21,22,73 hinting at a shared mechanism.

Sexual differentiation involves multiple mechanisms, many of

which influence reward-guided decision-making circuits.71,74

For example, while testosterone increases effort expenditure

and impulsive behavior,65–67 estradiol limits high-effort
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choices.16,69,75 Sex chromosomes also independently influence

such behaviors15 with elevated habit in XX carriers and increased

effort in XY carriers.76,77 It is important to note that such influences

of sexual differentiation are graded, rather than dichotomous, and

can interact with non-sex biological mechanisms in complex

ways. Indeed, here we found that a small number of males adop-

ted a similar approach to most females, implicating the graded

engagement of both sex difference and non-sex differencemech-

anisms in the degree of adoption of sex-biased exploratory strate-

gies we observed here. An intriguing possibility is that the spec-

trum of behaviors we observed across animals, from systematic

to volatile, may emerge from sex-biased tuning of learning strate-

gies that were critical to survival for the species as a whole.
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57. Treviño, M., Frey, S., and Köhr, G. (2012). Alpha-1 adrenergic receptors

gate rapid orientation-specific reduction in visual discrimination. Cereb.

Cortex 22, 2529–2541.

58. Prusky, G.T., West, P.W., and Douglas, R.M. (2000). Behavioral assess-

ment of visual acuity in mice and rats. Vision Res. 40, 2201–2209.

59. Vallortigara, G., and Rogers, L.J. (2005). Survival with an asymmetrical

brain: advantages and disadvantages of cerebral lateralization. Behav.

Brain Sci. 28, 575–589, discussion 589–633.

60. Botvinick, M.M. (2012). Hierarchical reinforcement learning and decision

making. Curr. Opin. Neurobiol. 22, 956–962.

61. Farashahi, S., Rowe, K., Aslami, Z., Lee, D., and Soltani, A. (2017).

Feature-based learning improves adaptability without compromising pre-

cision. Nat. Commun. 8, 1768.

62. Soltani, A., and Izquierdo, A. (2019). Adaptive learning under expected and

unexpected uncertainty. Nat. Rev. Neurosci. 20, 635–644.

ll
OPEN ACCESS

Current Biology 31, 1–12, January 11, 2021 11

Please cite this article in press as: Chen et al., Divergent Strategies for Learning in Males and Females, Current Biology (2020), https://doi.org/10.1016/
j.cub.2020.09.075

Article

http://refhub.elsevier.com/S0960-9822(20)31445-7/sref21
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref21
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref21
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref22
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref22
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref23
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref23
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref23
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref24
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref24
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref24
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref24
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref25
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref25
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref25
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref26
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref26
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref26
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref27
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref27
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref27
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref28
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref28
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref28
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref29
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref29
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref29
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref30
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref30
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref30
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref30
http://www.sciencedirect.com/science/article/pii/S0022249608001090
http://papers.nips.cc/paper/5180-forgetful-bayes-and-myopic-planning-human-learning-and-decision-making-in-a-bandit-setting.pdf
http://papers.nips.cc/paper/5180-forgetful-bayes-and-myopic-planning-human-learning-and-decision-making-in-a-bandit-setting.pdf
http://papers.nips.cc/paper/5180-forgetful-bayes-and-myopic-planning-human-learning-and-decision-making-in-a-bandit-setting.pdf
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref33
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref33
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref33
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref34
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref34
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref35
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref35
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref35
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref36
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref36
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref36
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref37
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref37
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref37
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref38
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref38
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref39
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref39
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref40
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref40
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref42
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref42
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref42
https://doi.org/10.1101/2019.12.28.879965
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref44
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref44
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref45
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref45
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref45
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref46
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref46
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref46
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref46
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref47
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref47
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref47
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref48
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref48
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref48
https://scielo.conicyt.cl/pdf/proy/v23n1/art02.pdf
https://scielo.conicyt.cl/pdf/proy/v23n1/art02.pdf
http://www.sciencedirect.com/science/article/pii/S0019995878900268
http://www.sciencedirect.com/science/article/pii/S0019995878900268
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref51
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref51
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref51
http://www.tqmp.org/RegularArticles/vol05-1/p001
http://www.tqmp.org/RegularArticles/vol05-1/p001
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref53
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref53
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref53
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref54
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref54
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref54
http://www.jstor.org/stable/270922
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref56
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref56
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref56
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref57
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref57
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref57
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref58
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref58
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref59
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref59
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref59
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref60
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref60
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref61
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref61
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref61
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref62
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref62


63. Miller, E.K., and Cohen, J.D. (2001). An integrative theory of prefrontal cor-

tex function. Annu. Rev. Neurosci. 24, 167–202.

64. Wallis, J.D., Anderson, K.C., and Miller, E.K. (2001). Single neurons in pre-

frontal cortex encode abstract rules. Nature 411, 953–956.

65. Buckley, M.J., Mansouri, F.A., Hoda, H., Mahboubi, M., Browning, P.G.F.,

Kwok, S.C., Phillips, A., and Tanaka, K. (2009). Dissociable components of

rule-guided behavior depend on distinct medial and prefrontal regions.

Science 325, 52–58.

66. Barraclough, D.J., Conroy, M.L., and Lee, D. (2004). Prefrontal cortex and

decision making in a mixed-strategy game. Nat. Neurosci. 7, 404–410.

67. Bussey, T.J., Wise, S.P., and Murray, E.A. (2001). The role of ventral and

orbital prefrontal cortex in conditional visuomotor learning and strategy

use in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 971–982.

68. Genovesio, A., Brasted, P.J., Mitz, A.R., and Wise, S.P. (2005). Prefrontal

cortex activity related to abstract response strategies. Neuron 47,

307–320.

69. Uban, K.A., Rummel, J., Floresco, S.B., and Galea, L.A.M. (2012).

Estradiol modulates effort-based decision making in female rats.

Neuropsychopharmacology 37, 390–401.

70. Georgiou, P., Zanos, P., Bhat, S., Tracy, J.K., Merchenthaler, I.J.,

McCarthy, M.M., and Gould, T.D. (2018). Dopamine and Stress System

Modulation of Sex Differences in Decision Making.

Neuropsychopharmacology 43, 313–324.

71. Calipari, E.S., Juarez, B., Morel, C., Walker, D.M., Cahill, M.E., Ribeiro, E.,

Roman-Ortiz, C., Ramakrishnan, C., Deisseroth, K., Han, M.-H., and

Nestler, E.J. (2017). Dopaminergic dynamics underlying sex-specific

cocaine reward. Nat. Commun. 8, 13877.

72. Zador, A.M. (2019). A critique of pure learning andwhat artificial neural net-

works can learn from animal brains. Nat. Commun. 10, 3770.

73. Kie, J.G. (1999). Optimal Foraging and Risk of Predation: Effects on

Behavior and Social Structure in Ungulates. J. Mammal. 80, 1114–1129

https://academic.oup.com/jmammal/article-abstract/80/4/1114/851833.

74. Arnold, A.P., and Chen, X. (2009). What does the ‘‘four core genotypes’’

mouse model tell us about sex differences in the brain and other tissues?

Front. Neuroendocrinol. 30, 1–9.

75. Song, Z., Kalyani, M., and Becker, J.B. (2018). Sex differences in moti-

vated behaviors in animal models. Curr. Opin. Behav. Sci. 23, 98–102.

76. Seu, E., Groman, S.M., Arnold, A.P., and Jentsch, J.D. (2014). Sex chro-

mosome complement influences operant responding for a palatable

food in mice. Genes Brain Behav. 13, 527–534.

77. Quinn, J.J., Hitchcott, P.K., Umeda, E.A., Arnold, A.P., and Taylor, J.R.

(2007). Sex chromosome complement regulates habit formation. Nat.

Neurosci. 10, 1398–1400.

ll
OPEN ACCESS

12 Current Biology 31, 1–12, January 11, 2021

Please cite this article in press as: Chen et al., Divergent Strategies for Learning in Males and Females, Current Biology (2020), https://doi.org/10.1016/
j.cub.2020.09.075

Article

http://refhub.elsevier.com/S0960-9822(20)31445-7/sref63
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref63
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref64
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref64
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref65
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref65
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref65
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref65
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref66
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref66
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref67
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref67
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref67
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref68
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref68
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref68
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref69
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref69
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref69
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref70
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref70
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref70
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref70
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref71
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref71
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref71
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref71
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref72
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref72
https://academic.oup.com/jmammal/article-abstract/80/4/1114/851833
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref74
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref74
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref74
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref74
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref74
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref75
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref75
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref76
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref76
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref76
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref77
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref77
http://refhub.elsevier.com/S0960-9822(20)31445-7/sref77


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nicola

Grissom (ngrissom@umn.edu)

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Data and software are available upon request to the Lead Contact, Nicola Grissom (ngrissom@umn.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty-two BL6129SF1/J mice (16 males and 16 females) were obtained from Jackson Laboratories (stock #101043). Mice arrived at

the lab at 7 weeks of age, and were housed in groups of four with ad libitum access to water while being mildly food restricted (85%–

95% of free feeding weight) for the experiment. Animals engaging in operant testing were housed in a 0900–2100 h reversed light

cycle to permit testing during the dark period, between 09:00 am and 5:00 pm. Before operant chamber training, animals were

food restricted to 85%–90% of free feeding body weight and had been pre-exposed to the reinforcer (Ensure). Pre-exposure to

the reinforcer occurred by providing an additional water bottle containing Ensure for 24 h in the home cage and verifying consumption

by all cagemates. Operant testing occurred five days per week (Monday-Friday), and the animals were fed after training with ad lib

food access provided on Fridays. All animals were cared for according to the guidelines of the National Institution of Health and the

University of Minnesota.

METHOD DETAILS

Apparatus
Sixteen identical triangular touchscreen operant chambers (Lafayette Instrument Co., Lafayette, IN) were used for training and

testing. Two walls black were acrylic plastic. The third wall housed the touchscreen and was positioned directly opposite the maga-

zine. The magazine provided liquid reinforcer (Ensure) delivered by a peristaltic pump, typically 7ul (280 ms pump duration). ABET-II

software (Lafayette Instrument Co., Lafayette, IN) was used to program operant schedules and to analyze all data from training and

testing.

Operant Training and tasks
Pretraining. animals were exposed daily to a 30-min session of initial touch training, during which a blank white square (cue) was pre-

sented on one side of the touchscreen, counterbalancing left and right between trials. This schedule provided free reinforcement

every 30 s, during which the cue was on. If animals touched the cue during this period, a reward three times the size of the regular

reward was dispensed (840 ms). This led to rapid acquisition. Following this, animals were exposed daily to a 30-min session of must

touch training. This schedule followed the same procedure as the initial touch training, but free reinforcers were terminated and an-

imals were required to nose poke the image in order to obtain a regular reward (7-uL, 280 ms).

Deterministic pairwise discrimination training. Animals were exposed to 10 days of pairwise discrimination training, during which

animals were presented with two highly discriminable image cues (‘‘marbles’’ and ‘‘fan’’). One image was always rewarded and the

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse; B6129SF1/J The Jackson Laboratory JAX: 101043

Software and Algorithms

Python 3 Python https://python.org

MATLAB R2013a MathWorks https://www.mathworks.

com/products/matlab.html

RStudio RStudio, PBC https://rstudio.com

ll
OPEN ACCESS

Current Biology 31, 1–12.e1–e4, January 11, 2021 e1

Please cite this article in press as: Chen et al., Divergent Strategies for Learning in Males and Females, Current Biology (2020), https://doi.org/10.1016/
j.cub.2020.09.075

Article

mailto:ngrissom@umn.edu
mailto:ngrissom@umn.edu
https://python.org
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://rstudio.com


other one was not. Within each session, animals completed either 250 trials or spent a maximum of two h in the operant chamber

(typically these mice completed �200 trials/day).

Two-armed bandit task. Animals were trained to perform a two-arm visual bandit task in the touchscreen operant chamber. On

eEach trial, animals were presented with a repeating set of two different images on the left and right side of the screen, counterbal-

ancing left and right across the session. Responses were registered by nose poking to one of the displayed images on the

touchscreen. Nose poke on one image triggered a reward 80% of the time (high payoff image), whereas the other image was only

reinforced 20% of the time (low payoff image). Following the reward collection, which was registered as entry and exit of the feeder

hole, the magazine would illuminate again and the mouse must re-enter and exit the feeder hole to initiate the next image trial. If the

previous trial was unrewarded, a 3 s time-out was triggered, during which no action could be taken. Following the timeout, the maga-

zine would illuminate and the mouse must enter and exit the feeder hole to initiate the next image trial. The ABET II system recorded

trial to trial image chosen history, reward history, grid position of the images with time-stamp. Within each day, animals completed

either 250 trials or spent a maximum of two h in the operant chamber. Animals were given 14 days to learn about the probabilistic

reward schedule of one image pair, before moving onto the next image pair. A total of six image pairs were trained, but two image

pairs were eliminated from analyses due to very high initial preference (> 70%) for one novel image over another, indicating that (to the

mice) these images appeared unexpectedly similar to previously experienced images with learned reward values.

RNA quantification
At the end of training, animals were sacrificed after the second day of learning a new image pair (around 400-500 trials of experience

per mouse), when we expected to see the biggest difference in learning performance and strength of lateralization. Animal brains

were extracted and targeted brain regions were dissected. We extracted RNA from targeted brain areas and assessed gene expres-

sion for the fos genes in the nucleus accumbens (NAc), dorsal medial striatum (DMS), amygdala (AMY), and hippocampus (HPC),

using quantitative Real Time PCR system (BioRad, USA). Fos expression normalized to the housekeeper gene glyceraldehyde 3-

phosphate dehydrogenase (gapdh) was calculated using the comparative delta Ct method.

QUANTIFICATION AND STATISTICAL ANALYSIS

General analysis techniques
Data was analyzed with custom PYTHON, MATLAB, and RStudio scripts. Generalized linear models were used to determine sex dif-

ferences over time, unless otherwise specified. P values were compared against the standard ɑ = 0.05 threshold. The sample size is

n = 16 for both males and females for all statistical tests. No animal was excluded from the experiment. All statistical tests used and

statistical details were reported in the results or the supplemental table. All figures depict mean ± SEM.

Data analyses
Generalized Linear Models (GLMs). In order to determine whether sex and number of trials (bins) predicts the accuracy of the task,

strength of lateralization, reaction time, mutual information (MI), or angle between probability vectors, we fit a series of generalized

linear models of the following form:

Y = b0 + b1ðsexÞ+ b2ðtrialsÞ+ b3ðsexÞðtrialsÞ; (Equation 1)

where Y is the dependent variable (accuracy, laterality, reaction time, MI, or angle). In this model, b1 described the main effect of sex

and b2 described the main effect of number of trials (bins). b3 captures any interaction effect between sex and number of trials (bins).

To determine whether c-fos expression in NAc, DMS, AMY, HPC, PFC, and sex predicted the weights of Principal Component (PC)

2, we fit the following generalized linear model:

PC2 = b0 + b1ðNAcÞ+ b2ðDMSÞ+ b3ðAMYÞ+ b4ðHPCÞ+ b5ðPFCÞ+ b6ðsexÞ: (Equation 2)

In this model, b1- b5 captures the predictive effect of gene expression in five regions on the use of PC2 strategy. b6 described the

effect of sex on the weights of PC2.

Degree of lateralization. As a measure of the strength of side bias, we used the absolute percentage of laterality,37 calculated for

each mouse according to the following formula:

Degree of laterality =

����right � left

right + left

���� (Equation 3)

Generalized Logistic RegressionModel.Mice could base their decisions on reward history in the spatial or image domains or on

choice history in the spatial or image domains. To determine how these four aspects of previous experience affected choice and how

these effects changed over time, we estimated the effect of the last trials’ reward outcome (O), image choice (I), and chosen side (S)

using logistic regression. If image (image 1) was on the left side of the screen, we could predict the probability of choosing that image

as a linear combination of the following four terms:

log

�
pðI1;tÞ
pðI2;tÞ

�
= b0 + b1 � ðI1;t�1 � I2;t�1Þ+ b2 �Ot�1 � ðI1;t�1 � I2;t�1Þ+ b3 � ðSL;t�1 �SR;t�1Þ+ b4 �Ot�1 � ðSR;t�1 �SL;t�1Þ; (Equation 4)
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where each term (O, I, and S) is a logical, indicating whether or not that event occurred on the last trial. As a result, the term (I1,t-1- I2,t-1)

is 1 if image 1 was chosen on the last trial, and �1 otherwise. The term b1 thus captures the tendency to either repeat the previous

image (when positive) or choose the other image (when negative). The term b2 * Ot-1 accounts for any additional effect of the previous

image on choice, when that previous choice was rewarded.. If image 1 was on the left side, SL,t-1 denotes the probability of repeating

the left side where image 1 appeared. However, because image 1 could be either on the left or the right side of the

screen (which allowed us to dissociably estimate the probability of choosing it based on side bias or image bias), we expanded

the (SL,t-1- SR, t-1) term to account for the current position of image 1 as follows:

.ððI1;t = LÞðSL;t�1 �SR;t�1Þ + ðI1;t = RÞðSR;t�1 �SL;t�1ÞÞ.;

meaning that the current position of image 1 determined the sign of the side bias term. This model was fit individually to each bin of

150 trials, within each animal and image pair, via cross-entropy minimization with a regularization term (L2/ridge regression).

Principal component analysis. In order to determine howdecision-making strategies differed across animals and bins, we looked

for the major axes of inter-individual variability in decision-making strategies. To do this, we took advantage of the fact that the co-

efficients of the generalized linear model provided a simplified description of how decision-making depended on image, side, and

outcome for each subject within each image pair. Because the generalized logistic regression model estimated 4 terms per image

pair and there were 23 independent bins per image pair, we described this meant that each animals’ behavior for each given image

pair could be described as 4*23 92*1 dimensional vectors. Because 32 animals completed 4 image pairs, this gave us a total of 128

total strategy vectors, or a 92x128 dimensional strategy matrix, with each column corresponding to one animal’s strategy in one im-

age pair. We then used principal component analysis to identify the linear combinations of model parameters that explained themost

variance across these strategy matrix. The first two principal components, which explained the majority of the variance (59%), are

illustrated in Figure 2E.

Conditional mutual information and model-free analyses. To account for idiosyncratic strategies, which could vary across an-

imals or image pairs, we used a model-free approach to quantify the extent to which behavior was structured without making strong

assumptions about what form this structure might take. We quantified the extent to which choice history was informative about cur-

rent choices as the conditional mutual information between the current choice (C) and the last choice (Ct-1), conditioned on the reward

outcome of the last trial (R):

IðCt;Ct�1jRÞ =
X
r˛R

X
ct˛C

X
ct˛C

Pct ;ct�1 ;rðCt;Ct�1;RÞlog PRðrÞPCt ;Ct�1 ;Rðct; ct�1; rÞ
PCt ;Rðct; rÞPCt�1 ;Rðct�1; rÞ; (Equation 5)

where the set of choice options (C) represented the unique combinations of each of the 2 images and 2 sides (4 combinations). To

account for observed differences in overall probability of reward for male and female animals, the mutual information was calculated

independently for trials following reward delivery and omission, and then summed across these two conditions.

We used a similar approach to provide amodel-free description of the animals’ choice patterns. Briefly, instead of finding the set of

beta weights that best described reliance on various history-dependent strategies over time, we directly calculated the joint proba-

bility of each possibility combination of last choice (image and side), last outcome (reward and unrewarded), and current choice (im-

age and side). This means that we represented the animals’ history-dependent choice pattern for each image pair as an 32-dimen-

sional vector (4 (last choice) x 2 (last outcome) x 4 (current choice) = 32) of joint probabilities. Via a geometric interpretation of a

multinomial distribution, we considered the animal’s pattern of behavior within any bin of trials as a point on the 32-1 dimensional

simplex formed by length-1 vectors. This geometric approach allowed us to map strategies over time or across bins as a diffusion

process across this simplex, where the angle between two vectors (between animals/between bins/between repetitions) is propor-

tional to step between them on a strategy simplex. The bigger the step between two vectors, the more variable the behavior pattern

is.

Multidimensional Scaling (MDS).MDS allows the visualization of complex strategies and choice behaviors. Since the choice be-

haviors across both spatial and image dimensions are high-dimensional, we had to plot in a lower dimensional space in order to visu-

alize them.MDS is ameans of visualizing similarity and variability of choices across trial bins within individuals. Choice patterns within

a trial bin (150 trials) that are more similar are closer together (shorter distance) on the graphs than patterns that are less similar. The

star represents the optimal strategy, which in this task, is to consistently choose the high reward image. In MDS graphs allow visu-

alization of how choice behaviors in one trial bin differ the next trial bin and how choice behaviors vary across image pairs. For

example, in the MDS graph of the second female animal (Figure S5), this animal only learned one image pair as only one path ap-

proached the optimal strategy (marked by the star). In most males’ graphs, the distance between each step, which represents

the choice pattern in one trial bin, is longer than most females. This suggests that choice behavior of males are more variable and

heterogeneous compared to that of females.

Mediation Analysis. First we used a direct model and regressed c-fos expression of either NAc or PFC on weights of PC2. When

assessing a mediation effect, three regression models are examined:

Model 1 (direct):

PC2 = g1 + bðNAcÞ+ ε1 (Equation 6)

Model 2 (mediation):
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sex = g2 +aðNAcÞ+ ε2 (Equation 7)

Model 3 (indirect):

PC2 = g3 + b0ðNAcÞ+ b1ðsexÞ+ ε3 (Equation 9)

In thesemodels, g1, g2, and g3 represent the intercepts for eachmodel, while ε1, ε2, and ε3 represent the error term. b denotes the

relationship between dependent variable (PC2 weights) and independent variable (NAc c-fos expression) in the first model, and b’de-

notes the same relationship in the third model. a represents the relationship between independent variable (NAc c-fos expression)

and mediator (sex) in the second model. The mediation effect is calculated using the product of coefficients (ab1). The Sobel test is

used to determine whether the mediation effect is statistically significant.45
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